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نرم های برداری



:ℝ𝐧تعریف نرم برداری روی فضای 

=xفرض کنید :مثال
1
0
−2

در این صورت،. 

نرم های برداری

.پیوستهتابع : ℝ𝒏 → ℝ+⋃ :کندصدقزیرخواصدرهرگاهنامیمℝ𝒏رویبردارینرمیکرا0

∋xهرازایبه.1 ℝ𝒏،𝒙 ≥ 𝒙و0 = ،𝒙=0اگرفقطواگر0

∋xهرازایبه.2 ℝ𝒏هروα ∈ ℝ،α𝒙 = α 𝒙،

,xهرازایبه.3 y∈ ℝ𝒏،𝒙 + 𝒚 ≤ 𝒙 + 𝒚.

:ℝ𝐧چند نرم برداری روی فضای 

:(1-نرم)یکنرم❖
x∈ ℝ𝒏 ⟹ 𝒙 1 = σ𝑖=1

𝑛 𝑥𝑖

:(∞-نرم)ماکزیممنرم❖
x∈ ℝ𝒏 ⟹ 𝒙 ∞ = max

𝑖=1:𝑛
𝑥𝑖

:(2-نرم)اقلیدسینرم❖

x∈ ℝ𝒏 ⟹ 𝒙 2 = 𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2

1برای)p-نرم❖ ≤ 𝑝):

x∈ ℝ𝒏 ⟹ 𝒙 𝑝 = 𝑥1
𝑝 + 𝑥2

𝑝 +⋯+ 𝑥𝑛
𝑝

1

𝑝

𝑥 1 = 1 + 0 + −2 = 3

𝑥 ∞ = max{ 1 , 0 , −2 } = 2

𝑥 2 = 1 2 + 0 2 + −2 2 = 5

𝑥 3 = 1 3 + 0 3 + −2 3
1
3 =

3
9



:تمرین
𝒙ثبات کنید -1 𝟏 ،𝒙 𝒙و ∞ .   هستندℝ𝒏نرم های برداری روی فضای برداری𝟐

نرم های برداری

.تابعبودنبردارینرماثبات 1

𝒙برداربرای،1-نرمتعریفبهتوجهبا =

𝑥1
𝑥2
⋮
𝑥𝑛

𝒙رابطهℝ𝒏از 1 = 𝑥1 + 𝑥2 +⋯ . + 𝑥𝑛لذا.استبرقرار:

α𝒙 1 = α𝑥1 + α𝑥2 +⋯+ α𝑥𝑛

= α 𝑥1 + α 𝑥2 +⋯ .+ α 𝑥𝑛

= α 𝑥1 + 𝑥2 +⋯ .+ 𝑥𝑛 = α 𝒙 1

𝒙 + 𝒚 1 = 𝑥1 + 𝑦1 + 𝑥2 + 𝑦2 +⋯+ 𝑥𝑛 + 𝑦𝑛

≤ 𝑥1| + |𝑦1 + 𝑥2| + |𝑦2 +⋯+ 𝑥𝑛| + |𝑦𝑛
= 𝒙 1 + 𝒚 1

:اثبات برقراری خاصیت اول

(:نامساوی مثلثی)اثبات برقراری خاصیت سوم

:اثبات برقراری خاصیت دوم

.با توجه به نامنفی بودن قدر مطلق یک عدد حقیقی، خاصیت اول بوضوح برقرار است



:چند نکته

نرم های برداری

𝒙 = 𝒙 − 𝒚 + 𝒚 ≤ 𝒙 − 𝒚 + 𝒚

نامساوی مثلثی داریموx=x-y+yاز :2اثبات

1-−𝒙 = −1 𝒙 = 𝒙

,xبه ازای هر -2 y∈ ℝ𝒏𝒙 − 𝒚 ≤ 𝒙 − 𝒚

⟹ 𝒙 − 𝒚 ≤ 𝒙 − 𝒚 (*)

، داریمy=y-x+xبه طور مشابه از 

⟹ 𝒚 − 𝒙 ≤ 𝒙 − 𝒚 (**)

:نتیجه می شود که(**)و (*)از بنابراین

𝒙 − 𝒚 ≤ 𝒙 − 𝒚

𝑥𝑇𝑦نامساوی کوشی شوارتز                    -3 ≤ 𝑥 2 𝑦 2

𝑥𝑇𝑦نامساوی هولدر-4 ≤ 𝑥 𝑝 𝑦 𝑞 1 ≤ 𝑝, 𝑞 ≤ ∞
1

𝑝
+

1

𝑞
= 1

𝒚 = 𝒚 − 𝒙 + 𝒙 ≤ 𝒚 − 𝒙 + 𝒙



نرم های برداری

{𝑥 ∈ 𝑅2: 𝑥 1 ≤ 1} {𝑥 ∈ 𝑅2: 𝑥 2 ≤ 1}

{𝑥 ∈ 𝑅2: 𝑥 ∞ ≤ 1} {𝑥 ∈ 𝑅2: 𝑥 𝑝 ≤ 1}

:مثال
𝑆 = 𝑥 ∈ 𝑅2: 𝑥 ≤ 1



نرم های برداری

(:Equivalence of Vector Norms)هم ارزی نرم های برداریتعریف

.بردارینرمدو 𝛼و. 𝛽هایثابتاگرگوییمارزهمرا𝑎وbکهطوریبهباشندداشتهوجودحقیقی

a . 𝛼 ≤ . 𝛽 ≤ 𝑏 . 𝛼

∋xهرازایبه ℝ𝒏،هاینرم. 2, . و∞ . :کنندمیصدقزیرارزیهمروابطدر1 :گزاره

𝑥 2 ≤ 𝑥 1 ≤ 𝑛 𝑥 2 (الف

𝑥 ∞ ≤ 𝑥 2 ≤ 𝑛 𝑥 ∞ (ب

𝑥 ∞ ≤ 𝑥 1 ≤ 𝑛 𝑥 ∞
(ج



نرم های برداری

(:Equivalence of Vector Norms)هم ارزی نرم های برداریتعریف

.بردارینرمدو 𝛼و. 𝛽هایثابتاگرگوییمارزهمرا𝑎وbکهطوریبهباشندداشتهوجودحقیقی

a . 𝛼 ≤ . 𝛽 ≤ 𝑏 . 𝛼

=xفرض کنید :مثال
1
0
−2

،در این صورت. 

𝑥 2 ≤ 𝑥 1 ≤ 𝑛 𝑥 2

𝑥 1 = 1 + 0 + −2 = 3

𝑥 ∞ = max{ 1 , 0 , −2 } = 2

𝑥 2 = 1 2 + 0 2 + −2 2 = 5

𝑥 ∞ ≤ 𝑥 1 ≤ 𝑛 𝑥 ∞

5 ≤ 3 ≤ 15

2 ≤ 3 ≤ 6⟹

⟹

𝑥 ∞ ≤ 𝑥 2 ≤ 𝑛 𝑥 ∞ 2 ≤ 5 ≤ 2 5⟹



نرم های برداری

𝑥(ج)نامساوی اثبات ∞ ≤ 𝑥 1 ≤ 𝑛 𝑥 ∞

𝑥 ∞ ≤ 𝑥 1 𝑥 1 ≤ 𝑛 𝑥 ∞

(1)-نامساوی   جاثبات
∀ 𝑥 ∈ ℝ𝑛 𝑥 ∞ ≤ 𝑥 1 ?

(1  ) (2 )

𝑥 ∞ =𝑚𝑎𝑥 ( 𝑥1 , 𝑥2 , … , 𝑥𝑛 )

⟹ ∀ 𝑥 ∈ ℝ𝑛 𝑥 1 ≤ 𝑛 𝑥 ∞

(2)-نامساوی   جاثبات

∀ 𝑥 ∈ ℝ𝑛 𝑥 1 ≤ 𝑛 𝑥 ∞ ?

𝑥 1 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

⟹ ∀ 𝑥 ∈ ℝ𝑛 𝑥 ∞ ≤ 𝑥 1

≤ 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑥 1

≤ n𝑚𝑎𝑥 ( 𝑥1 , 𝑥2 , … , 𝑥𝑛 ) = 𝑛 𝑥 ∞



نرم های برداری

:تمرین

:روابط هم ارزی نرم های برداری زیر را ثابت کنید-1

𝑥 2 ≤ 𝑥 1 ≤ 𝑛 𝑥 2

𝑥 ∞ ≤ 𝑥 2 ≤ 𝑛 𝑥 ∞

(الف

(ب



نرم های ماتریسی



نرم های ماتریسی

𝒏 ،(ℝ𝒎×𝒏:)در 𝒎تعریف نرم ماتریسی روی فضای برداری ماتریس های حقیقی 

.پیوستهتابع : ℝ𝒎×𝒏 → ℝ+⋃ :کندصدقزیرخواصدرهرگاهنامیمماتریسینرمیکرا0

∋Aهرازایبه.1 ℝ𝒎×𝒏،A ≥ Aو0 = ،A=0اگرفقطواگر0

∋Aهرازایبه.2 ℝ𝒎×𝒏هروα ∈ ℝ،αA = α A،

,Aهرازایبه.3 B∈ ℝ𝒎×𝒏A + B ≤ A + B.



نرم های ماتریسی

subordinet)بردارینرمبهوابستهماتریسیهاینرم matrix norm):

.برداریهاینرمو𝐴دلخواهماتریسیکبودنمفروضبا 𝑚و. 𝑛،اینبهوابستهماتریسینرم

شودمیتعریفزیرشکلبهبرداریهاینرم

.کندمیصدقماتریسینرمخاصیتهرسهدرنرماین

𝐴 𝑚,𝑛 = sup
0≠𝑥∈𝑅𝑛

𝐴𝑥 𝑚

𝑥 𝑛

:نکته

𝐴 𝑚,𝑛 = sup
𝑥 𝑛=1

𝐴𝑥 𝑚𝐴 𝑚,𝑛 = sup
0≠𝑥∈𝑅𝑛

𝐴𝑥 𝑚

𝑥 𝑛
⟹



نرم های ماتریسی

subordinet)بردارینرمبهوابستهماتریسیهاینرم matrix norm):

𝐴 𝑃 = max
𝒙≠0

𝐴𝒙 𝑃

𝒙 𝑃

در حالت خاص

.بردارینرمو𝐴دلخواهماتریسیکبودنمفروضبا 𝑝،بهبردارینرماینبهوابستهماتریسینرم

شودمیتعریفزیرشکل

𝐴𝒙 𝑃 ≤ 𝐴 𝑃 𝒙 𝑃

:نکته

𝐴 𝑃 ≥
𝐴𝒙 𝑃

𝒙 𝑃

𝐴 𝑃 = max
𝒙 𝑃=1

𝐴𝒙 𝑃

⟹

⟹

𝐴 𝑃 = max
𝒙≠0

𝐴𝒙 𝑃

𝒙 𝑃
⟹



چند نرم ماتریسی مهم

:(هاستونمجموعماکزیممنرم)1-نرم❖

:(سطرهامجموعماکزیممنرم)∞-نرم❖

:(طیفینرم)2-نرم❖

:(اشمیتهیلبرتنرم)فروبینیوسنرم❖

𝐴 𝐹 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗
2

ൗ1 2

= 𝑡𝑟(𝐴𝑇𝐴)

𝐴 1 = max
𝑗=1:𝑛

෍

𝑖=1

𝑚

𝑎𝑖𝑗

𝐴 ∞ = max
𝑖=1:𝑚

෍

𝑗=1

𝑛

𝑎𝑖𝑗

𝐴 2 = 𝐴𝑇𝐴 ماتریساز ماکزیمم مقدارویژه = 𝜎𝑚𝑎𝑥(𝐴)

نرم های ماتریسی

:𝐿2,1نرم❖

𝐴 2,1 =෍

𝑗=1

𝑛

𝒂𝑗 2
=෍

𝑗=1

𝑛

෍

𝑖=1

𝑚

𝑎𝑖𝑗
2

ൗ1 2



=Aفرض کنید:1مثال
1 −2

−3 4
5 6

در این صورت،. 

𝐴 1 = max 1 + −2 + 5 , −2 + 4 + 6 = max 9,12 = 12

𝐴 ∞ = 𝑚𝑎𝑥 1 + −2 , −3 + |4|, 5 + 6 = max 3,7,11 = 11

𝐴 2 =?

𝐴فرض کنید:2مثال =
2 5
1 3

در این صورت،. 

𝐴𝑇𝐴 =
2 1
5 3

2 5
1 3

=
5 13
13 34

:عبارتند از 𝐴𝑇𝐴مقادیر ویژه 
𝜆1 = 38.9743 , 𝜆2 = 0.0257

𝐴 𝐹 = 12 + (−2)2+(−3)2+42 + 52 + 62 = 91

𝐴 2 = 𝑚𝑎𝑥{𝜆1𝜆2} = 6.2429

نرم های ماتریسی



نرم های ماتریسی

چند خاصیت از نرم ماتریسی وابسته

∀ x∈ ℝ𝒏 & 𝐴 ∈ ℝ𝒎×𝒏 𝐴𝑥 ≤ 𝐴 𝑥

∀ 𝐴 ∈ ℝ𝒍×𝒎 & 𝐵 ∈ ℝ𝒎×𝒏 ⟹ 𝐴𝐵 𝑙,𝑛 ≤ 𝐴 𝑙,𝑚 𝐵 𝑚,𝑛

∀ 𝐴, 𝐵 𝐴𝐵 𝑝 ≤ 𝐴 𝑝 𝐵 𝑝 p=1,2, ∞

∀ 𝐴,𝐵 𝐴𝐵 𝐹 ≤ 𝐴 𝐹 𝐵 𝐹



ماتریسینرم های 

𝑆 = {𝑥 ∈ 𝑅2: 𝑥 1 ≤ 1}

𝐴فرض کنید:مثال =
1 2
0 2

S={𝑥 ∈ 𝑅2: 𝑥 1 ≤ 1} → 𝐴𝑥: 𝑥 ∈ 𝑆

{𝐴𝑥: 𝑥 1 ≤ 1}

(2,2)

𝐴𝑥برداری واحدی که به ازای آن،  0بیشترین مقدار را به خود اختصاص می دهد، بردار 1
1

ضریب تقویت . است

𝐴برابر  1 = .است4

𝐴 1 = sup
𝑥 1=1

𝐴𝑥 1



ماتریسینرم های 

:تمرین
باشدnدرnماتریس واحد Iاگر -1

𝐼 1 =?

𝐼 2 =?

𝐼 ∞ =?

𝐼 𝐹 =?

𝐼 =
1 0 0
0 1 0
0 0 1

𝐼 1 = max 1 + 0 + 0 , 0 + 1 + 0 , 0 + 0 + 1 = max 1,1,1 = 1

𝐼 ∞ = max 1 + 0 + 0 , 0 + 1 + 0 , 0 + 0 + 1 = max 1,1,1 = 1

𝐼 2 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐼𝑇𝐼 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼 = 1

𝐼 𝐹 = 12 + 02 + 02 + 02 + 12 + 02 + 02 + 02 + 12 = 3



نرم های ماتریسی

هم ارزی نرم های ماتریسیتعریف

.ماتریسینرمدو 𝛼و. 𝛽هایثابتاگرگوییمارزهمرا𝑎وbطوریبهباشندداشتهوجودحقیقی

که

a . 𝛼 ≤ . 𝛽 ≤ 𝑏 . 𝛼

∋Aدلخواهماتریسهرازایبه ℝ𝒎×𝒏،ماتریسیهاینرم. 2, . و∞ . :کنندمیصدقزیرارزیهمروابطدر1 :گزاره

𝐴 2 ≤ 𝐴 𝐹 ≤ 𝑛 𝐴 2

1

𝑚
𝐴 1 ≤ 𝐴 2 ≤ 𝑛 𝐴 1

1

𝑛
𝐴 ∞ ≤ 𝐴 2 ≤ 𝑚 𝐴 ∞ (الف

(ب

(ج

𝐴 2 ≤ 𝐴 1 𝐴 ∞ (د



نرم های ماتریسی

(الف)اثبات

1

𝑛
𝐴 ∞ ≤ 𝐴 2 𝐴 2 ≤ 𝑚 𝐴 ∞

(1)-اثبات   الف
∀ 𝐴 ∈ ℝ𝑚×𝑛 1

𝑛
𝐴 ∞ ≤ 𝐴 2 ?

(1  ) (2 )

:داریمتعریفبنابر

𝐴 ∞ = max
𝒙≠0

𝐴𝒙 ∞

𝒙 ∞
(∗)

∗∗ ⟹

1

𝑛
𝐴 ∞ ≤ 𝐴 2 ≤ 𝑚 𝐴 ∞

:داریمبرداریهاینرمارزیهمبنابرهمچنین

𝑥 2 ≤ 𝑛 𝑥 ∞ (**)

𝐴𝑥 ∞ ≤ 𝐴𝑥 2 ∗∗∗

و

1

𝑥 ∞
≤

𝑛

𝑥 2
∗∗∗∗

∗∗∗ & ∗∗∗∗ ⟹
𝐴𝑥 ∞

𝑥 ∞
≤

𝑛 𝐴𝑥 2

𝑥 2
⟹ max

𝑥≠0

𝐴𝑥 ∞

𝑥 ∞
≤ max

𝑥≠0

𝑛 𝐴𝑥 2

𝑥 2

1

𝑛
𝐴 ∞ ≤ 𝐴 2⟹



نرم های ماتریسی

(الف)اثبات

1

𝑛
𝐴 ∞ ≤ 𝐴 2 𝐴 2 ≤ 𝑚 𝐴 ∞

(2)-اثبات   الف
∀ 𝐴 ∈ ℝ𝑚×𝑛 𝐴 2 ≤ 𝑚 𝐴 ∞ ?

(1  ) (2 )

:داریمتعریفبنابر

𝐴 2 = max
𝒙≠0

𝐴𝒙 2

𝒙 2
(∗)

∗∗∗ ⟹

1

𝑛
𝐴 ∞ ≤ 𝐴 2 ≤ 𝑚 𝐴 ∞

:داریمبرداریهاینرمارزیهمبنابرهمچنین

𝐴𝑥 2 ≤ 𝑚 𝐴𝑥 ∞ ∗∗

𝑥 ∞ ≤ 𝑥 2 ∗∗∗

و

1

𝑥 2
≤

1

𝑥 ∞
∗∗∗∗

∗∗ & ∗∗∗∗ ⟹
𝐴𝑥 2

𝑥 2
≤

𝑚 𝐴𝑥 ∞

𝑥 ∞
⟹ max

𝑥≠0

𝐴𝑥 2

𝑥 2
≤ max

𝑥≠0

𝑚 𝐴𝑥 ∞

𝑥 ∞

𝐴 2 ≤ 𝑚 𝐴 ∞⟹



نرم های ماتریسی

:تمرین

:روابط هم ارزی نرم های برداری زیر را ثابت کنید-1

𝐴 2 ≤ 𝐴 𝐹 ≤ 𝑛 𝐴 2

1

𝑚
𝐴 1 ≤ 𝐴 2 ≤ 𝑛 𝐴 1



همگرایی دنباله ها



هاهمگرایی دنباله

:همگرایی دنباله ای از بردارها

,𝒗(1),𝒗(2)بردارهایدنباله اگرهمگراست𝒗برداربهℝ𝑛از…

lim
𝑘→∞

𝒗𝑖
(𝑘)

= 𝒗𝑖 𝑖 = 1,2, . . , 𝑛

:همگرایی دنباله ای از ماتریس ها

,𝐴(1),𝐴(2)ماتریس هایدنباله اگرهمگراست𝐴ماتریسبهℝ𝑚×𝑛از…

lim
𝑘→∞

𝑎𝑖𝑗
𝑘
= 𝑎𝑖𝑗 𝑖 = 1,2, . . , 𝑚 & 𝑗 = 1,2, . . , 𝑛



هاهمگرایی دنباله

,𝒗(1),𝒗(2)بردارهایدنبالهقضیه اگرفقطواگرهمگراست𝒗برداربهℝ𝑛از…
lim
𝑘→∞

𝒗(𝑘) − 𝒗 = 0

,𝐴(1),𝐴(2)ماتریس هایدنبالهقضیه اگرفقطواگرهمگراست𝐴ماتریسبهℝ𝑚×𝑛از…
lim
𝑘→∞

𝐴(𝑘) − 𝐴 = 0

𝒗(𝑘)کنیدفرض:مثال =

1

𝑘
1

𝑘
1

𝑘

𝒗(𝑘)دنبالهآنگاه
𝑘=1

∞
برداربه

0
0
0

.همگراست

𝐴(𝑘)کنیدفرض:مثال =
1 +

1

𝑘

1

𝑘
1

𝑘
2 +

1

𝑘

𝐴(𝑘)دنبالهآنگاه
𝑘=1

∞
1ماتریسبه 0

0 2
.همگراست

:گوییممیباشدهمگراAماتریسبه{𝐴(𝑘)}دنبالهاگر:نکته

lim
𝐾→∞

𝐴(𝑘) = 𝐴



هاهمگرایی دنباله

,𝐴1,𝐴2دنبالهقضیه از𝜆𝑖ویژهمقدارهراگرفقطواگرهمگراستصفرماتریسبه𝐴ماتریستوانهایاز...
𝜆𝑖نامساویدرAماتریس < (باشدنبایدیکمساوی)کندصدق1

𝑇−1𝐴𝑇 ∶= 𝐽 =

𝐽1
𝐽2

⋱
𝐽𝑟

Aمربعیماتریسهرازایبه:اثبات ∈ ℝ𝑚×𝑛،پذیرمعکوسماتریسTبطوریکهداردوجود:

آن،درکه

𝐽𝑖 =

𝐽𝑖 1

𝐽𝑖 ⋱
⋱ 1

𝐽𝑖

𝐽𝑖
𝑘 =

𝜆𝑖
𝑘 𝑘𝜆𝑖

𝑘−1 𝑘
2
𝜆𝑖
𝑘−2

𝜆𝑖
𝑘 𝑘𝜆𝑖

𝑘−1

𝜆𝑖
𝑘

⋯ 𝑘
𝑛−1

𝜆𝑖
𝑘−𝑛+1

⋯ 𝑘
𝑛−2

𝜆𝑖
𝑘−𝑛+2

⋱ ⋮
⋱ 𝑘𝜆𝑖

𝑘−1

𝜆𝑖
𝑘

lim
𝐾→∞

𝐽𝑖
𝑘 = 𝟎 ⟺ 𝜆𝑖 < 1

که،دادنشانمی توانسادهجبریمحاسبه یبا

:نتیجهدر

lim
𝐾→∞

𝐴𝐾 = lim
𝐾→∞

𝑇𝐽𝑇−1 𝑇𝐽𝑇−1 … 𝑇𝐽𝑇−1 = lim
𝐾→∞

𝑇𝐽𝐾𝑇−1 =𝟎⟹

⟺ 𝜆𝑖 < 1 for each i



ماتریس همگرا



ماتریس همگرا

کندمیلصفرماتریسبه{𝐴𝑘}توانیدنبالهاگرهمگراست𝐴ماتریسگوییم:همگراماتریستعریف

lim
𝐾→∞

𝐴𝑘 = 𝟎

|λ|داریمآنگاهباشد𝐴ماتریسازویژهمقداریکλکنیدفرض:قضیه ≤ 𝐴،یماتریسنرمیک.آندرکه
.استوابسته

صورت،ایندر.باشد𝐴ماتریسازλویژهمقداربامتناظرصفرغیرویژهبردارxکنیدفرض:اثبات

𝐴𝑥 = λ𝑥

𝜆 𝑥 ≤ 𝐴 𝑥

𝐴𝑥 = 𝜆𝑥 = 𝜆 𝑥

𝐴𝑥 ≤ 𝐴 𝑥

⟹

:از طرفی طبق خواص نرم ماتریسی وابسته داریم
(∗)

(∗∗)

:کهشودمینتیجه(∗∗)و(∗)از

:داریمxبودنصفرغیربهتوجهبالذا،

𝜆 ≤ 𝐴



ماتریس همگرا

:Aماتریسطیفیشعاعتعریف
𝜌 𝐴 = max

𝑖
𝜆𝑖

:نتیجه
𝜌 𝐴 ≤ 𝐴

𝐴اگرهمگراست𝐴ماتریس:نتیجه < (استوابستهماتریسینرمیک.).1



همگرایی سری توانی 



همگرایی سری توانی 

𝐼)ماتریسبه…+I+A+A2توانیسری:قضیه − 𝐴)−1ماتریساگراست،همگرا𝐴باشدهمگرا.

𝐼)کنیممیثابتابتدا:اثبات − 𝐴)−1داردوجود

limپسهمگراست𝐴کهاینازهمگرا،ماتریستعریفبهتوجهبا
𝐾→∞

𝐴𝑘 = 𝟎

𝜆𝑖طرفیاز < 𝜆𝑖کهدهدمینتیجه1 < 1بنابراین،1 − 𝜆𝑖 ≠ ویژهمقدارهمهکهاستمعنیبداناین.0
𝐼ماتریس − 𝐴نتیجهدر.صفرندمخالف(𝐼 − 𝐴)−1داردوجود.

,𝐴1,𝐴2دنبالهکهاینازقضیه،طبقلذا، کهشودمینتیجههمگراست،صفرماتریسبه𝐴ماتریسهایتواناز...
𝜆𝑖نامساویدر𝐴ماتریساز𝜆𝑖ویژهمقدارهر < .کندمیصدق1

𝐼ماتریسازویژهمقداریک𝜆𝑖-1باشد،𝐴ماتریسویژهمقداریک𝜆𝑖اگردانیممیخطیجبرازهمچنین، − 𝐴است.

:همگراییاثبات
𝐼 − 𝐴 𝐼 + 𝐴 + 𝐴2 +⋯+ 𝐴𝑘 = 𝐼 − 𝐴𝑘+1

(𝐼 − 𝐴)بنابراین.استپذیرمعکوسماتریسی

𝐼 + 𝐴 + 𝐴2 +⋯+ 𝐴𝑘 = 𝐼 − 𝐴 −1 𝐼 − 𝐴𝑘+1

= 𝐼 − 𝐴 −1 − 𝐼 − 𝐴 −1𝐴𝐾+1

:داریمفوقرابطهطرفینازحدگیریبااکنون

lim
𝐾→∞

𝐼 + 𝐴 +⋯+ 𝐴𝐾 = lim
𝐾→∞

(𝐼 − 𝐴)−1− lim
𝐾→∞

(𝐼 − 𝐴)−1𝐴𝐾+1

limکهشودمینتیجه𝐴بودنهمگرااز
𝐾→∞

(𝐼 − 𝐴)−1𝐴𝐾+1 = 𝟎

نتیجهدر
I+A+𝐴2… = (𝐼 − 𝐴)−1



نرم های وابسته و معکوس ها



هاهای وابسته و معکوسنرم

𝐸اگر:قضیه < 𝐼)گاهآن1 − 𝐸)−1وداردوجود

𝐼 − 𝐸 −1 ≤
1

1 − 𝐸

𝐼 =
1 0
0 1

𝐸 = −10−1 10−3

10−2 10−1

𝐼 − 𝐸 = 1 + 10−1 −10−3

−10−2 1 − 10−1

𝐸 1 = 0.11 < 1

𝐼 − 𝐸 −1 =
1

𝐼 − 𝐸
1 − 10−1 10−3

10−2 1 + 10−1



هاهای وابسته و معکوسنرم

𝐸اگر:قضیه < 𝐼)گاهآن1 − 𝐸)−1وداردوجود

𝐼 − 𝐸 −1 ≤
1

1 − 𝐸

𝐸اگرکنیممیثابتابتدا < 𝐼)گاهآن،1 − 𝐸)−1داردوجود

𝐼نامساویاثبات − 𝐸 −1 ≤
1

1− 𝐸
:

:داریمقبلقضیهاز

(𝐼 − 𝐸)−1= 𝐼 + 𝐸 + 𝐸2 +⋯ .= lim
𝐾→∞

෍

𝑖=0

𝐾

𝐸𝑖

:داریمفوقرابطهطرفینازگیرینرمبااکنون

(𝐼 − 𝐸)−1 = lim
𝐾→∞

෍

𝑖=0

𝐾

𝐸𝑖 ≤ lim
𝐾→∞

෍

𝑖=0

𝐾

𝐸𝑖

𝐸𝑖دانیممی ≤ 𝐸 𝑖بنابراین

(𝐼 − 𝐸)−1 ≤ lim
𝐾→∞

෍

𝑖=0

𝐾

𝐸 𝑖 ≤
1

1 − 𝐸

,𝜆1,𝜆2کنیدفرض … ,𝜆𝑛ماتریسویژهمقادیرEاینکهاز.باشند𝐸 < 𝜆𝑖داریم1 < مقادیربنابراین،.1
𝐼ماتریسویژه − 𝐸،1)یعنی − 𝜆1)،(1 − 𝜆2)،...1و − 𝜆𝑛ماتریسبنابراین.صفرندمخالف𝐼 − 𝐸

𝐼)واستپذیرمعکوس − 𝐸)−1داردوجود.

: اثبات وجود معکوس



هاهای وابسته و معکوسنرم

𝐸اگر:قضیه < گاهآن1

𝐼 − 𝐸 −1 − 𝐼−1 ≤
𝐸

1 − 𝐸

([1]):اثبات

𝐴−1𝐸وباشدنامنفردماتریس𝐴کنیدفرض:قضیه < 𝐴)آنگاه1 − 𝐸)−1وداردوجود

𝐴−1 −(𝐴 − 𝐸)−1

𝐴−1
≤

𝐴−1𝐸

1 − 𝐴−1𝐸

([1]):اثبات



نرم وابسته و ماتریس متعامد



متعامدوابسته و ماتریسنرم

گاهآنباشد،متعامدماتریسیکOکنیدفرض:قضیه
𝑂 2 = 1

:اثبات

گاهآنباشد،متعامدماتریسیکOکنیدفرض:قضیه
𝐴𝑂 2 = 𝐴 2

:اثبات

O 2 = O𝑇Oازماتریس ماکزیمم مقدارویژه = 𝜌 O𝑇O

= 𝜌 𝐼 = 1

𝐴O 2 = 𝜌 O𝑇𝐴𝑇𝐴O = 𝜌 𝐴𝑇𝐴 = 𝐴 2

گاهآنباشد،متعامدماتریسیکOکنیدفرض:قضیه
𝐴𝑂 𝐹 = 𝐴 𝐹

:اثبات

= 𝑡𝑟𝑎𝑐𝑒 𝐴𝑇𝐴 = 𝐴 𝐹𝐴O 𝐹 = 𝑡𝑟𝑎𝑐𝑒 O𝑇𝐴𝑇𝐴O
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