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Basic Definitions, Algorithms and Notation
Matrix Representation

Matrix-vector multiplication Ax

o By inner product
o By combination of the columns of A

Matrix-Matrix multiplication

o By inner product
o By outer product



Basic Definitions, Algorithms and Notation

¢

otation: Vector
Let R designate the set of real numbers. We denote the n real vector x € R™ as

X1
2

xeER" o x= :2, x; ER
Xn

N

@tor Operations:

* transposition (R™1 — R1X™),

y=x'

= Vi =X
* addition (R® x R" — R"®),

z=x+y = zi=x;ty
* scalar-vector, multiplication (R x R® — R"),

y=ax = Yy; = ax;

* inner product (dot product) (R"™ x R®™ — R),

— T _— \'n
a=xy= a=2i-1XYi




Basic Definitions, Algorithms and Notation

motation: Matrix
Let R designate the set of real numbers. We denote the m-by-n real matrix A € R™*™ as

Air Q12 0 Qin
Az1 Gz -+ Azn

A € RM*1 S A= (aij) = 7 a;j ER
Am1 Am2 " Omn

N

A

@trix Operations:

* transposition (R™™" — R™™M),

C=AT = ¢;=aj;
* gddition (R™™ x R™*" — RM*N),

C=A+B = c¢;=a;+b;
* scalar-matrix, multiplication (R x R™*" — R™*"),

C=ad = c¢j=aa

* matrix-matrix, multiplication (R™*P x RP*" — R™*™),

& C =AB = Cij = 2221 aikbkj




Basic Definitions, Algorithms and Notation

@inition: Vector Space on R" \

A Vector Space on R" is a nonempty set of objects, called vectors, subject to the ten axioms listed
below. The axioms must hold for all vectors u, v and w in R™ and for all scalars ¢ and d:

1. The sum of u and v, denoted by u + v, is in R™

2.U+v=v+u

.(utv)+w=u+(v+w)

4. There is a zero vector 0 in R™, such thatu+0=u

5. For each vector u in R™, there is a vector —u in R™, such that u + (-u) =0

6. The scalar multiple of u by c, denoted by cu, is in R™

7.c(u+v)=cu+cv

8.(c+d)u=cu+du

9.c(du)=(cd)u

i /




Basic Definitions, Algorithms and Notation

Gample 1: For all integer n = 0, R™ is a vector space. \

Example 2:R is a vector space.

Example 3: R? is a vector space.

Example 4: Let M,,(R) denotes the set of all n<n real matrices, then M,,(R) is a vector space.

Example 5: M;(R) is a vector space.

| )




Basic Definitions, Algorithms and Notation

Definition: Subspace on R"
Suppose S is a nonempty subset of R™. We say that S is a subspace of R™ if S is a vector
space under the addition and scalar multiplication as R™.

Example 1: Any vector space has two improper subspaces:{0} and the vector space itself.
Other subspaces are called proper. The set consisting of only the zero vector, {0}, is called the
zero subspace.

Example 2: The nonempty set § = {(0,y,2)|y, z € R} of R3, is a subspace of vector space R3.

Example 3: For given A € R™ ", the solution set of the homogeneous linear system Ax = 0 is a
subspace of R™™. This includes all lines, planes, and hyperplanes through the origin.

Example 4: Let S € M,,(R) denotes the set of all real symmetric n X n matrices. Then S is a

subspace of M,,(R)




Basic Definitions, Algorithms and Notation

Theorem: If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and
only if S is closed under the addition and scalar multiplication in V.

Example 1: Let S € M, (R) denotes the set of real symmetric n X n matrices. Then S is a subspace of

M, (R):
Proof:
S={AeM,(R):AT = A 0 0 O
{4 € My(R) } e o
0 0 O
1. 0€S Obvious.
2.1fA, BeS,thenA+ B €S:
(A+B)" =A"+B" = A +B. . 3 s
3.If A € S and k is a scaler then kA € S: A= g 46 —76]-)
(kAT = kAT = KA.
-2 3 5
5 -6 7




Basic Definitions, Algorithms and Notation

Theorem: If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and
only if S is closed under the addition and scalar multiplication in V.

Example 2: The nonempty set § = {(0,y,2)|y, z € R} of R3, is a subspace of vector space R3.

1. (0,0,0)€S Obvious.

2.1fA=1(0,vy4,21),B=(0,y,,2,) €S,then A+ B € S:

A+B=(0,y1,21) + (0,y2,2) = (0 + 0,y; + 2,2 + 2)
=(0,y,z) €S

3.1fA=1(0,y,2) € S, and k is a scaler then k4 € S:

kA = k(0,y,z)= (0k,yk,zk) = (0,y,,z,) €S



Basic Definitions, Algorithms and Notation

Definition: linear combination

expression of the form
C1V1 + Cvy + o+ VU

Let vy, vy, ..., vy, a set of vectors in a vector space R™. A linear combination of vy, v,, . . ., v IS an

Where ¢, ¢y, . . ., c) are scalars.
. 4
Question
What’s the linear combination of v; = [ﬂ and v, = [_21] in R%?
c19g + CoUN=REY [ﬂ +c, [_21] = [Cgltzcczz] ER? c¢,c;ER
17 C1:2,C2:0,C3=—1
l
114 C1V1 + CaU, + C3V3 =
A v B _0_
2 — A -
SR ! +Ol0] — H=
. ‘ ” K 0
' V3 = ) U lol l 1] [2+0—1
121 2 + O +0




Basic Definitions, Algorithms and Notation

Definition: span
The span of v, v,, . .., vy in R™ is the set of all linear combinations of them

span{vy, v,, . . ., v} ={civg + vy + o F Uk €1, Cos L, cx € R}.

span{v} = {cv € R™: c € R}

{ Example 1: The span of a single, nonzero vector v € R™ is a line through the origin J




Basic Definitions, Algorithms and Notation

Theorem:
Letvy, vy, ..., vy a set of vectors in a vector space R™. The span of vy, v,, ..., vy IS a subspace of R™.

)

Question:
, t [271:n 2
What’s the span of v; = [1] and v, = [_1] in R=?

span{vy,v,} = {c1v; + V51 ¢, ¢; € R}

= {e; [ﬂ e [_21]: c1, ¢ € R}

_ cl+202]_ }
—{[Cl_cz 101,02 ER
= R?

12



Basic Definitions, Algorithms and Notation

Gefinition: linearly dependent \

A set of vectors vy, U,, . . ., v, from vector space R™ is said to be linearly dependent if at least one
of the vectors in the set can be defined as a linear combination of the others ; or if there exist scalers c;,
Cy, ..., Ck, NOt all zero, such that

C1V1 + CoUy + -+ v, = 0.

Example.

v=[] u=[§] t=[g] =  t=v+2v

N _4

@finition: linearly independent \
A set of vectors vy, V5, .. ., v, from vector space R™ is said to be linearly independent, if no vector

in the set can be written in this way, then the vectors are said to be linearly independent; or if linear
combination of, c;v; + cyv, + -+ + ¢ v, = 0, results that all scalers ¢4, c;, . . . and ciare zero.

Example.

171:[%]' 172:[;]1 if qui+tcar,=0 = ¢=c=0

\ 4

13



Basic Definitions, Algorithms and Notation

Definition: rank of a matrix h
The rank of a matrix is defined as
(a) the maximum number of linearly independent column vectors in the matrix or
(b) the maximum number of linearly independent row vectors in the matrix.
| Both definitions are equivalent. )

Definition: rank of a matrix
The rank of a matrix is defined as the number of leading 1s in rref(A).

A = 2 8 20] ‘rref(fl)—

4 8 12

0
1 3.5

14



Basic Definitions, Algorithms and Notation

Theorem: If Ae R™" P € R™™ and Qe R™™", P and Q invertible, then
(a) rank(4Q )=rank(4),
(b) rank(PA)=rank(4),
(c) rank(PAQ )=rank(4).

[Corollary: Elementary row and column operations on a matrix are rank-preserving.

15



Matrix Representation

T aA11 412 Ain
Az1 Q2 Aon
Element wise: A=| : ‘e R
ai1 Qi -+ Qip
[Am1  Am2 Amn
- T )
4] aiq
iy rl a| .
Row partition: A=]+ r,=|."|€ER
_71,5_ |Ain
alj
Clzj
T —_ m
Column partition: A =[c1 ¢z -+ Cq] ¢=| . |€ER
| Amyj

16



matrix-vector multiplication Ax

Low Level (for computing):
Inner products of the rows of A with x

High Level (for understanding):
Combination of the columns of A

17
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matrix-vector multiplication
AX Using Inner products

Low Level (for computing):

Inner products of the rows of A with x

11 A2
a1 dpp
a1 Qi

1 Am1 Am2

amn-

y; is the inner product of the i™ row with the vector x

18



matrix-vector multiplication
AX Using Inner products

Low Level (for computing):

Inner products of the rows of A with x

a1 dpp

aiq1 air

1 Am1 Am2

n
V1= Z A1k Xj

v, Is the inner product of the first row with the vector x

RA
Il
—_

19



matrix-vector multiplication
AX Using Inner products

Low Level (for computing):

Inner products of the rows of A with x

Fa11 Qg2 V1
A1 Az q E )
a1 Qg Vi

1Am1  Am2  Vm

n
Y2 = Z Aok Xj

v, Is the inner product of the second row with the vector x

=
Il
=

20



matrix-vector multiplication
AX Using Inner products

Low Level (for computing):

Inner products of the rows of A with x

yaN

[ 11 Qg2 V1
dz1 Az Vo
ai1 03%) - Vi
A1 Az W
n
Ym = E AmkXj
k=1

Y, 1S the inner product of the m™ row with the vector x

21



matrix-vector multiplication
AX Using Inner products

. _
Example: z Ly

1 2] S
¥ RL)X

Ax =

4 17
19

n
Vi = Z Ak Xj
k=1

y; is the inner product of the i™" row with the vector x

22



matrix-vector multiplication
AX Using Columns of A

High Level (for understanding):
Combination of the columns of A

23



Ax =

matrix-vector multiplication
AX Using Columns of A

Y1

Y2

| Vm |

24



matrix-vector multiplication
AX Using Columns of A

qxp
. B
A N
. "l :
- W A
[ X

Yy = A(Cl)xl +

y is a combination of the columns of A

25



Ax =

matrix-vector multiplication
AX Using Columns of A

_xl_
a;; [ a1 Qin 2D [V1]
a21 ) a2] ) azn E _ yz
an1 G 5 mi T apnll | Ym._
L

y = A(Cl)xl + A(Cz)xz +

y is a combination of the columns of A

26



Ax =

matrix-vector multiplication
AX Using Columns of A

_xl
a1 Qaq2 C1Y Q X Y1
A1 Qpp 7t Qzj = |2
: Xj :
Am1 Amo Amj Amnll : Ym
)

y=A0x, + ACx, + ...+ Ay,

y is a combination of the columns of A

27



matrix-vector multiplication
AX Using Columns of A

Example:
1 2] - 1 2
Ax =13 4f[7,|=-1[3| +4[4
5 6 5 6.
—1 8-
=|=3[ t|16
=51 124

1

y IS a combination of the columns of A

y = A(Cl)xl + A(Cz)xz 4o 4 A(Cn)xn

28



Matrix times Matrix:

¢ Inner products

¢ Outer product

29



Matrix times Matrix:
by inner products

[ A11 412
a1 Ay

T

Am1 Am2

alp
o Aop (b11 b1y bin €11 C12 Cin
: b2 D22 byn|_| €21 €22 " Can
. G ; : 2 .
T :
: Lb b b Cm1i Cm2 " Cmn
p1l p2 pn
Amp
p
Cij = E Ak by
k=1

c;; is the inner product of the i*" row with the j* column

30




Matrix times Matrix:
by inner products

dy7 Q12
az1 Q2 le bin C12
; : by; bon, C22
aj;  Qap 5 :
s : bPJ bpn Cm2
Am1  Am2
D
C11 &m E A1k by
k=1

c;; is the inner product of the i*" row with the j* column




Matrix times Matrix:
by inner products

[ A11 Q12
a1 Az le bin] [ €11 €12
; : by; bon | (2D C22
aj;  Qap 5 : :
s : bp] bpn Cm1 Cm2
| Am1 Am2
D
C21 = E Azp b1
k=1

c;; is the inner product of the i*" row with the j* column




Matrix times Matrix:
by inner products

N

aij; 4

a1 Ay

aiq air
T
—ml “'m2

alp
azp bll b12 bl] €11 €12
b21 bzz sz > €21 C22
e alp E
: |lbpr by - by |
" Gmp
4
Cmn = § Amibrn
k=1

c;; is the inner product of the i*" row with the j* column

33




Matrix times Matrix:
by inner products

-3 3

Example: Z a1 bi1 z a1 by

k=1 k=1
3 3

1 2
[g gh_j _23]= zaZRbkl zaZRbkz

k=1 k=1
3 3

2 a3y by Z a3y by

Lk=1 k=1 |

i —17 [ 2 77

no2|,] noalf
0

ot
4 | Ll
F5e

g
4 | 31

=1|[3 4] [3 4]

= 6]

[5 6l
7 —4
=13 —6]
19 -8

c;; is the inner product of the i™" row with the j™ column
14

Cij = z Ak by j

k=1



F A11
azq

| Am1

air
Ao

Am2

Matrix times Matrix:
by outer products

by4

b21

1 bp1

bin]

bon

bpn_

C is a sum of outer products of the columns of A with the rows of B




Matrix times Matrix:
by outer products

Q
=
N

Q
[y
=
YN

amz cee amp- _bpl

C — A(Cl)B(rl) +

C is a sum of outer products of the columns of A with the rows of B

by

Ay 0 Q2p M

bpn_

36



Matrix times Matrix:
by outer products

L a11 ( e alp i W [ C11 C12 cee Cln -
a21 aZp < 21 b22 bZn > C21 CZZ C2n
: : [ =] : .
Gm1 @mz " Omp. _bpl bpz bpn_ Cm1 Cm2 - Cm;nld

C — A(Cl)B(rl) + A(CZ)B(TZ) +

C is a sum of outer products of the columns of A with the rows of B



F A11
azq

| Am1

air
Ao

Am2

by outer products

Matrix times Matrix:

C =ACDB,y+ AP By + -+ ACPIB,

C is a sum of outer products of the columns of A with the rows of B




Matrix times Matrix:
by outer products

Example:
1 2 ! 2
[3 4‘[ A _23]=3‘[—1 2] + 4‘[4 —3]
5 6 .5 L6
—1 2 (8 —6
=s[-3 6|+ |16 —12]
-5 10 124 —18
7 -4
=[13 —6‘
19 -8

C is a sum of outer products of the columns of A with the rows of B

C — A(Cl)B(rl) + A(CZ)B(TZ)

39
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