

Scientific Computing

Matrix Multiplication

Dr. Ali Valinejad

valinejad.ir
valinejad@umz.ac.ir

University of Mazandaran

Outline:

- ❖ Basic Definitions, Algorithms and Notation
- ❖ Matrix Representation
- ❖ Matrix-vector multiplication \mathbf{Ax}
 - By inner product
 - By combination of the columns of \mathbf{A}
- ❖ Matrix-Matrix multiplication
 - By inner product
 - By outer product

Basic Definitions, Algorithms and Notation

Notation: Vector

Let \mathbb{R} designate the set of real numbers. We denote the n real vector $x \in \mathbb{R}^n$ as

$$x \in \mathbb{R}^n \iff x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad x_i \in \mathbb{R}$$

Vector Operations:

- *transposition* ($\mathbb{R}^{n \times 1} \rightarrow \mathbb{R}^{1 \times n}$),

$$y = x^T \Rightarrow y_i = x_i$$

- *addition* ($\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$),

$$z = x + y \Rightarrow z_i = x_i + y_i$$

- *scalar-vector, multiplication* ($\mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^n$),

$$y = \alpha x \Rightarrow y_i = \alpha x_i$$

- *inner product (dot product)* ($\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$),

$$a = x^T y \Rightarrow a = \sum_{i=1}^n x_i y_i$$

Basic Definitions, Algorithms and Notation

Notation: Matrix

Let \mathbb{R} designate the set of real numbers. We denote the \mathbf{m} -by- \mathbf{n} real matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$\mathbf{A} \in \mathbb{R}^{m \times n} \iff A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}$$

Matrix Operations:

- *transposition* ($\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{n \times m}$),

$$C = \mathbf{A}^T \Rightarrow c_{ij} = a_{ji}$$

- *addition* ($\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$),

$$C = \mathbf{A} + \mathbf{B} \Rightarrow c_{ij} = a_{ij} + b_{ij}$$

- *scalar-matrix, multiplication* ($\mathbb{R} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$),

$$C = \alpha \mathbf{A} \Rightarrow c_{ij} = \alpha a_{ij}$$

- *matrix-matrix, multiplication* ($\mathbb{R}^{m \times p} \times \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{m \times n}$),

$$C = \mathbf{AB} \Rightarrow c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

Basic Definitions, Algorithms and Notation

Definition: Vector Space on \mathbb{R}^n

A **Vector Space on \mathbb{R}^n** is a nonempty set of objects, called vectors, subject to the ten axioms listed below. The axioms must hold for all vectors u , v and w in \mathbb{R}^n and for all scalars c and d :

1. The sum of u and v , denoted by $u + v$, is in \mathbb{R}^n
2. $u + v = v + u$
3. $(u + v) + w = u + (v + w)$
4. There is a **zero vector 0** in \mathbb{R}^n , such that $u + 0 = u$
5. For each vector u in \mathbb{R}^n , there is a **vector $-u$** in \mathbb{R}^n , such that $u + (-u) = 0$
6. The scalar multiple of u by c , denoted by cu , is in \mathbb{R}^n
7. $c(u + v) = cu + cv$
8. $(c + d)u = cu + du$
9. $c(du) = (cd)u$
10. $1u = u$

Basic Definitions, Algorithms and Notation

Example 1: For all integer $n \geq 0$, \mathbb{R}^n is a vector space.

Example 2: \mathbb{R} is a vector space.

Example 3: \mathbb{R}^2 is a vector space.

Example 4: Let $M_n(\mathbb{R})$ denotes the set of all $n \times n$ real matrices, then $M_n(\mathbb{R})$ is a vector space.

Example 5: $M_3(\mathbb{R})$ is a vector space.

Basic Definitions, Algorithms and Notation

Definition: Subspace on \mathbb{R}^n

Suppose S is a nonempty subset of \mathbb{R}^n . We say that S is a *subspace* of \mathbb{R}^n if S is a vector space under the addition and scalar multiplication as \mathbb{R}^n .

Example 1: Any vector space has two improper subspaces: $\{\mathbf{0}\}$ and the vector space itself.

Other subspaces are called proper. The set consisting of only the zero vector, $\{\mathbf{0}\}$, is called the zero subspace.

Example 2: The nonempty set $S = \{(0, y, z) | y, z \in \mathbb{R}\}$ of \mathbb{R}^3 , is a subspace of vector space \mathbb{R}^3 .

Example 3: For given $A \in \mathbb{R}^{n \times n}$, the solution set of the homogeneous linear system $Ax = 0$ is a subspace of $\mathbb{R}^{n \times n}$. This includes all lines, planes, and hyperplanes through the origin.

Example 4: Let $S \in M_n(\mathbb{R})$ denotes the set of all real symmetric $n \times n$ matrices. Then S is a subspace of $M_n(\mathbb{R})$

Basic Definitions, Algorithms and Notation

Theorem: If V is a vector space and S is a *nonempty* subset of V then S is a *subspace* of V if and only if S is closed under the addition and scalar multiplication in V .

Example 1: Let $S \in M_n(\mathbb{R})$ denotes the set of real symmetric $n \times n$ matrices. Then S is a subspace of $M_n(\mathbb{R})$:

Proof:

$$S = \{A \in M_n(\mathbb{R}) : A^T = A\}$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = A^T$$

1. $0 \in S$ Obvious.
2. If $A, B \in S$, then $A + B \in S$:
$$(A + B)^T = A^T + B^T = A + B.$$
3. If $A \in S$ and k is a scalar then $kA \in S$:
$$(kA)^T = kA^T = kA.$$

$$A = \begin{bmatrix} -2 & 3 & 5 \\ 3 & 4 & -6 \\ 5 & -6 & 7 \end{bmatrix} \rightarrow$$

$$A^T = \begin{bmatrix} -2 & 3 & 5 \\ 3 & 4 & -6 \\ 5 & -6 & 7 \end{bmatrix} = A$$

Basic Definitions, Algorithms and Notation

Theorem: If V is a vector space and S is a *nonempty* subset of V then S is a *subspace* of V if and only if S is closed under the addition and scalar multiplication in V .

Example 2: The nonempty set $S = \{(0, y, z) | y, z \in \mathbb{R}\}$ of \mathbb{R}^3 , is a subspace of vector space \mathbb{R}^3 .

1. $(0,0,0) \in S$ Obvious.

2. If $A = (0, y_1, z_1), B = (0, y_2, z_2) \in S$, then $A + B \in S$:

$$\begin{aligned} A + B &= (0, y_1, z_1) + (0, y_2, z_2) = (0 + 0, y_1 + y_2, z_1 + z_2) \\ &= (0, y, z) \in S \end{aligned}$$

3. If $A = (0, y, z) \in S$, and k is a scalar then $kA \in S$:

$$kA = k(0, y, z) = (0k, yk, zk) = (0, y_*, z_*) \in S$$

Basic Definitions, Algorithms and Notation

Definition: linear combination

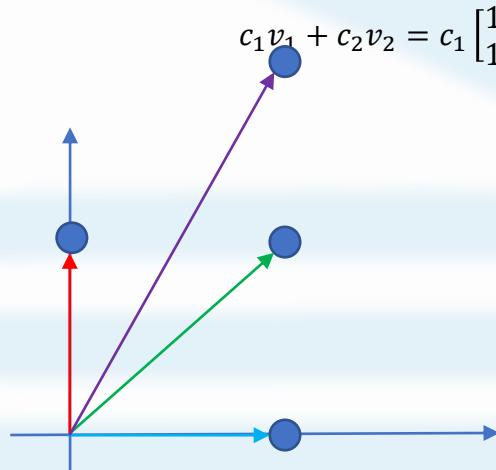
Let v_1, v_2, \dots, v_k a set of vectors in a vector space \mathbb{R}^n . A *linear combination* of v_1, v_2, \dots, v_k is an expression of the form

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

Where c_1, c_2, \dots, c_k are scalars.

Question:

What's the *linear combination* of $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ in \mathbb{R}^2 ?



$$c_1 v_1 + c_2 v_2 = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} c_1 + 2c_2 \\ c_1 - c_2 \end{bmatrix} \in \mathbb{R}^2, \quad c_1, c_2 \in \mathbb{R}$$

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$c_1 = 2, c_2 = 0, c_3 = -1$$

$$v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$c_1 v_1 + c_2 v_2 + c_3 v_3 =$$

$$v_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 + 0 - 1 \\ 2 + 0 + 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Basic Definitions, Algorithms and Notation

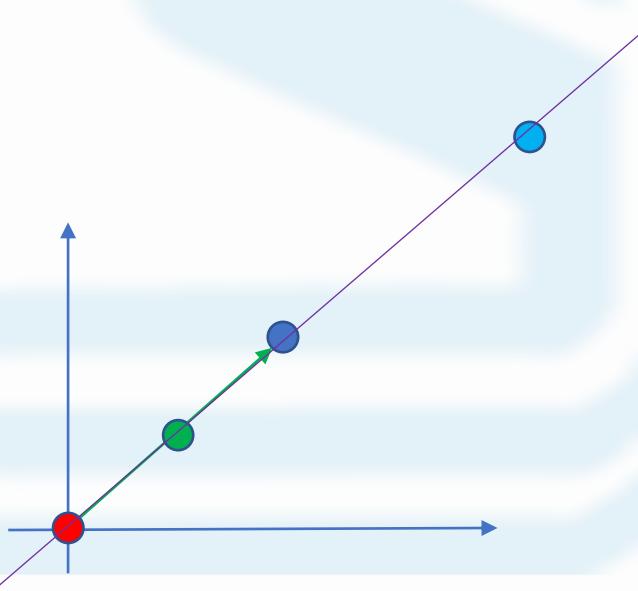
Definition: span

The **span** of v_1, v_2, \dots, v_k in \mathbb{R}^n is the set of *all linear combinations* of them

$$\text{span}\{v_1, v_2, \dots, v_k\} = \{c_1v_1 + c_2v_2 + \dots + c_kv_k: c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Example 1: The span of a single, nonzero vector $v \in \mathbb{R}^n$ is a line through the origin

$$\text{span}\{v\} = \{cv \in \mathbb{R}^n: c \in \mathbb{R}\}$$



$$c = 0 \implies cv = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$c = -0.5 \implies cv = 0.5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}$$

$$c = 2 \implies cv = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

:

$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Basic Definitions, Algorithms and Notation

Theorem:

Let v_1, v_2, \dots, v_k a set of vectors in a vector space \mathbb{R}^n . The span of v_1, v_2, \dots, v_k is a subspace of \mathbb{R}^n .

Question:

What's the span of $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ in \mathbb{R}^2 ?

$$\text{span}\{v_1, v_2\} = \{c_1 v_1 + c_2 v_2 : c_1, c_2 \in \mathbb{R}\}$$

$$= \left\{ c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} : c_1, c_2 \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} c_1 + 2c_2 \\ c_1 - c_2 \end{bmatrix} : c_1, c_2 \in \mathbb{R} \right\}$$

$$= \mathbb{R}^2$$

Basic Definitions, Algorithms and Notation

Definition: linearly dependent

A set of vectors v_1, v_2, \dots, v_k from vector space \mathbb{R}^n is said to be **linearly dependent** if at least one of the vectors in the set can be defined as a linear combination of the others ; or if there exist scalers c_1, c_2, \dots, c_k , not all zero, such that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = \mathbf{0}.$$

Example.

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad u = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad t = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \quad \Rightarrow \quad t = v + 2u$$

Definition: linearly independent

A set of vectors v_1, v_2, \dots, v_k from vector space \mathbb{R}^n is said to be **linearly independent**, if no vector in the set can be written in this way, then the vectors are said to be **linearly independent**; or if linear combination of, $c_1 v_1 + c_2 v_2 + \dots + c_k v_k = \mathbf{0}$, results that all scalers c_1, c_2, \dots and c_k are zero.

Example.

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}: \quad \text{if } c_1 v_1 + c_2 v_2 = \mathbf{0} \quad \Rightarrow \quad c_1 = c_2 = \mathbf{0}$$

Basic Definitions, Algorithms and Notation

Definition: rank of a matrix

The *rank of a matrix* is defined as

- (a) the maximum number of linearly independent column vectors in the matrix or
- (b) the maximum number of linearly independent row vectors in the matrix.

Both definitions are equivalent.

Definition: rank of a matrix

The *rank of a matrix* is defined as the number of leading 1s in $rref(A)$.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 20 \\ 4 & 8 & 12 \end{bmatrix} \quad \xrightarrow{\hspace{10em}} \quad rref(A) = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 3.5 \\ 0 & 0 & 0 \end{bmatrix}$$

Basic Definitions, Algorithms and Notation

Theorem: If $A \in \mathbb{R}^{m \times n}$, $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$, P and Q invertible, then

- (a) $\text{rank}(AQ) = \text{rank}(A)$,
- (b) $\text{rank}(PA) = \text{rank}(A)$,
- (c) $\text{rank}(PAQ) = \text{rank}(A)$.

Corollary: Elementary row and column operations on a matrix are *rank-preserving*.

Matrix Representation

Element wise:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Row partition:

$$A = \begin{bmatrix} r_1^T \\ r_2^T \\ \vdots \\ r_m^T \end{bmatrix} \quad r_i = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{bmatrix} \in \mathbb{R}^n$$

Column partition:

$$A = [c_1 \quad c_2 \quad \cdots \quad c_n] \quad c_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} \in \mathbb{R}^m$$

matrix-vector multiplication Ax

Low Level (for computing):

Inner products of the rows of A with x

High Level (for understanding):

Combination of the columns of A

matrix-vector multiplication

Ax Using *Inner products*

Low Level (for computing):

Inner products of the rows of A with x

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{bmatrix}$$

$$y_i = \sum_{k=1}^n a_{ik} x_j$$

y_i is the inner product of the i^{th} row with the vector x

matrix-vector multiplication

Ax Using *Inner products*

Low Level (for computing):

Inner products of the rows of A with x

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{bmatrix}$$

$$y_1 = \sum_{k=1}^n a_{1k} x_k$$

y_1 is the inner product of the *first* row with the vector x

matrix-vector multiplication

Ax Using *Inner products*

Low Level (for computing):

Inner products of the rows of A with x

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{bmatrix}$$

$$y_2 = \sum_{k=1}^n a_{2k} x_j$$

y_2 is the inner product of the *second* row with the vector x

matrix-vector multiplication

Ax Using *Inner products*

Low Level (for computing):

Inner products of the rows of A with x

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_m \end{bmatrix}$$

$$y_m = \sum_{k=1}^n a_{mk} x_j$$

y_m is the inner product of the m^{th} row with the vector x

matrix-vector multiplication

Ax Using *Inner products*

Example:

$$Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^3 a_{1k} x_k \\ \sum_{k=1}^3 a_{2k} x_k \\ \sum_{k=1}^3 a_{3k} x_k \end{bmatrix}$$

$$= \begin{bmatrix} [1 & 2] \begin{bmatrix} -1 \\ 4 \end{bmatrix} \\ [3 & 4] \begin{bmatrix} -1 \\ 4 \end{bmatrix} \\ [5 & 6] \begin{bmatrix} -1 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 7 \\ 13 \\ 19 \end{bmatrix} := y$$

$$y_i = \sum_{k=1}^n a_{ik} x_k$$

y_i is the inner product of the i^{th} row with the vector x

matrix-vector multiplication

\mathbf{Ax} Using *Columns of A*

High Level (for understanding):

Combination of the columns of A

matrix-vector multiplication

Ax Using *Columns of A*

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

matrix-vector multiplication

Ax Using *Columns of A*

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\textcolor{red}{y} = A^{(\textcolor{blue}{c1})} x_1 +$$

$\textcolor{red}{y}$ is a combination of the columns of A

matrix-vector multiplication

Ax Using *Columns of A*

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\textcolor{red}{y} = A^{(\textcolor{blue}{c1})}x_1 + A^{(\textcolor{blue}{c2})}x_2 +$$

$\textcolor{red}{y}$ is a combination of the columns of A

matrix-vector multiplication

Ax Using *Columns of A*

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\textcolor{red}{y} = A^{(\textcolor{blue}{c1})}x_1 + A^{(\textcolor{blue}{c2})}x_2 + \cdots + A^{(\textcolor{blue}{cn})}x_n$$

$\textcolor{red}{y}$ is a combination of the columns of A

matrix-vector multiplication

Ax Using *Columns of A*

Example:

$$\begin{aligned} Ax &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + 4 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \\ &= \begin{bmatrix} -1 \\ -3 \\ -5 \end{bmatrix} + \begin{bmatrix} 8 \\ 16 \\ 24 \end{bmatrix} \\ &= \begin{bmatrix} 7 \\ 13 \\ 19 \end{bmatrix} \end{aligned}$$

y is a combination of the columns of A

$$y = A^{(c1)}x_1 + A^{(c2)}x_2 + \cdots + A^{(cn)}x_n$$

Matrix times Matrix:

- ❖ Inner products
- ❖ Outer product

Matrix times Matrix: by *inner products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ip} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

c_{ij} is the inner product of the i^{th} row with the j^{th} column

Matrix times Matrix: by *inner products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ip} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$c_{11} = \sum_{k=1}^p a_{1k} b_{k1}$$

c_{ij} is the inner product of the i^{th} row with the j^{th} column

Matrix times Matrix: by *inner products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ip} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pj} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$c_{21} = \sum_{k=1}^p a_{2k} b_{k1}$$

c_{ij} is the inner product of the i^{th} row with the j^{th} column

Matrix times Matrix: by *inner products*

$$\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1p} \\
 a_{21} & a_{22} & \cdots & a_{2p} \\
 \vdots & \vdots & & \vdots \\
 a_{i1} & a_{i2} & \cdots & a_{ip} \\
 \vdots & \vdots & & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mp}
 \end{bmatrix}
 \begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\
 b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\
 \vdots & \vdots & & \vdots & & \vdots \\
 b_{p1} & b_{p2} & \cdots & b_{pj} & \cdots & b_{pn}
 \end{bmatrix}
 = \begin{bmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{21} & c_{22} & \cdots & c_{2n} \\
 \vdots & \vdots & & \vdots \\
 c_{m1} & c_{m2} & \cdots & c_{mn}
 \end{bmatrix}$$

$$c_{mn} = \sum_{k=1}^p a_{mk} b_{kn}$$

c_{ij} is the inner product of the i^{th} row with the j^{th} column

Matrix times Matrix: by *inner products*

Example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^3 a_{1k}b_{k1} & \sum_{k=1}^3 a_{1k}b_{k2} \\ \sum_{k=1}^3 a_{2k}b_{k1} & \sum_{k=1}^3 a_{2k}b_{k2} \\ \sum_{k=1}^3 a_{3k}b_{k1} & \sum_{k=1}^3 a_{3k}b_{k2} \end{bmatrix}$$
$$= \begin{bmatrix} [1 \ 2] \begin{bmatrix} -1 \\ 4 \end{bmatrix} & [1 \ 2] \begin{bmatrix} 2 \\ -3 \end{bmatrix} \\ [3 \ 4] \begin{bmatrix} -1 \\ 4 \end{bmatrix} & [3 \ 4] \begin{bmatrix} 2 \\ -3 \end{bmatrix} \\ [5 \ 6] \begin{bmatrix} -1 \\ 4 \end{bmatrix} & [5 \ 6] \begin{bmatrix} 2 \\ -3 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 7 & -4 \\ 13 & -6 \\ 19 & -8 \end{bmatrix}$$

c_{ij} is the inner product of the i^{th} row with the j^{th} column

$$c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

Matrix times Matrix: by *outer products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$\textcolor{red}{C}$ is a sum of outer products of the columns of $\textcolor{blue}{A}$ with the rows of $\textcolor{green}{B}$

Matrix times Matrix: by *outer products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \ddots & \vdots & \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$\textcolor{red}{C} = A^{(\textcolor{blue}{c1})} B_{(\textcolor{green}{r1})} +$$

$\textcolor{red}{C}$ is a sum of outer products of the columns of A with the rows of B

Matrix times Matrix: by *outer products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$\textcolor{red}{C} = A^{(\textcolor{blue}{c1})} B_{(\textcolor{green}{r1})} + A^{(\textcolor{blue}{c2})} B_{(\textcolor{green}{r2})} +$$

$\textcolor{red}{C}$ is a sum of outer products of the columns of A with the rows of B

Matrix times Matrix: by *outer products*

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

$$\textcolor{red}{C} = A^{(\textcolor{blue}{c1})} B_{(\textcolor{green}{r1})} + A^{(\textcolor{blue}{c2})} B_{(\textcolor{green}{r2})} + \cdots + A^{(\textcolor{blue}{cp})} B_{(\textcolor{green}{rp})}$$

$\textcolor{red}{C}$ is a sum of outer products of the columns of A with the rows of B

Matrix times Matrix: by *outer products*

Example:

$$\begin{aligned} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 4 & -3 \end{bmatrix} &= \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \begin{bmatrix} -1 & 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} \\ &= \begin{bmatrix} -1 & 2 \\ -3 & 6 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 8 & -6 \\ 16 & -12 \\ 24 & -18 \end{bmatrix} \\ &= \begin{bmatrix} 7 & -4 \\ 13 & -6 \\ 19 & -8 \end{bmatrix} \end{aligned}$$

$\textcolor{red}{C}$ is a sum of outer products of the columns of $\textcolor{blue}{A}$ with the rows of $\textcolor{blue}{B}$

$$\textcolor{red}{C} = A^{(\textcolor{blue}{c1})} B_{(\textcolor{green}{r1})} + A^{(\textcolor{blue}{c2})} B_{(\textcolor{green}{r2})}$$

مراجع

1. Biswa Nath Datta, *Numerical Linear Algebra and Applications*, 1995.
2. Gilbert Strang, Fourth Edition, *Linear Algebra and Its Applications*, 2005
3. G.H. Golub, and C.F. Van Loan, **Matrix Computations**, 4rd Edition, Johns Hopkins University Press, 2013.
4. J. Demmel, **Applied Numerical Linear Algebra**, SIAM, 1997.
5. L.N. Trefthen, and lll.D. Bau, **Numerical Linear Algebra**, SIAM, 1997.
6. <https://math.colorado.edu/~nita/SystemsofLinearEquations.pdf>