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❖ Basic Definitions, Algorithms and Notation

❖ Matrix Representation

❖ Matrix-vector multiplication  Ax

o By inner product

o By combination of the columns of A

❖ Matrix-Matrix multiplication

o By inner product

o By outer product

Outline:
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Notation: Vector
Let ℝ designate the set of real numbers. We denote the 𝒏 real vector 𝒙 ∈ ℝ𝒏 as

𝒙 ∈ ℝ𝒏 ⟺ 𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑛

, 𝑥𝑖 ∈ ℝ

Vector Operations:

• transposition (ℝ𝒏×𝟏 ⟶ℝ𝟏×𝒏),          
𝒚 = 𝒙𝑻 ⟹ 𝑦𝑖 = 𝑥𝑖

• addition (ℝ𝒏 × ℝ𝒏 ⟶ℝ𝒏),          

𝒛 = 𝒙 + 𝒚 ⟹ 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖

• scalar-vector, multiplication (ℝ× ℝ𝒏 ⟶ℝ𝒏),          

𝐲 = 𝛼𝒙 ⟹ 𝑦𝑖 = 𝛼𝑥𝑖

• inner product (dot product) (ℝ𝒏 × ℝ𝒏 ⟶ℝ),          

𝑎 = 𝒙𝑻𝒚 ⟹ 𝑎 = σ𝑖=1
𝑛 𝑥𝑖𝑦𝑖

Basic Definitions, Algorithms and Notation
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Notation: Matrix
Let ℝ designate the set of real numbers. We denote the 𝒎-by-𝒏 real matrix 𝑨 ∈ ℝ𝒎×𝒏 as

𝑨 ∈ ℝ𝒎×𝒏 ⟺ 𝐴 = 𝑎𝑖𝑗 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑛

, 𝑎𝑖𝑗 ∈ ℝ

Matrix Operations:

• transposition (ℝ𝒎×𝒏 ⟶ℝ𝒏×𝒎),          

𝐶 = 𝑨𝑻 ⟹ 𝑐𝑖𝑗 = 𝑎𝑗𝑖
• addition (ℝ𝒎×𝒏 × ℝ𝒎×𝒏 ⟶ℝ𝒎×𝒏),          

𝐶 = 𝑨 + 𝑩 ⟹ 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗
• scalar-matrix, multiplication (ℝ× ℝ𝒎×𝒏 ⟶ℝ𝒎×𝒏),          

𝐶 = 𝛼𝑨 ⟹ 𝑐𝑖𝑗 = 𝛼𝑎𝑖𝑗
• matrix-matrix, multiplication (ℝ𝒎×𝒑 × ℝ𝒑×𝒏 ⟶ℝ𝒎×𝒏),          

𝐶 = 𝑨𝑩 ⟹ 𝑐𝑖𝑗 = σ𝑘=1
𝑝

𝑎𝑖𝑘𝑏𝑘𝑗

Basic Definitions, Algorithms and Notation
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Definition: Vector Space on ℝ𝒏

A Vector Space on ℝ𝒏 is a nonempty set  of objects, called vectors, subject to the ten axioms listed 

below. The axioms must hold for all vectors u, v and w in ℝ𝒏 and for all scalars c and d: 

1. The sum of u and v, denoted by u + v, is in ℝ𝒏

2. u + v = v + u

3. ( u + v ) + w = u + ( v + w )

4. There is a zero vector 0 in ℝ𝒏, such that u + 0 = u

5. For each vector u in ℝ𝒏, there is a vector –u in ℝ𝒏, such that u + (–u) = 0

6. The scalar multiple of u by c, denoted by cu, is in ℝ𝒏

7. c ( u + v ) = cu + cv

8. ( c + d ) u = cu + du

9. c ( du ) = ( cd ) u

10. 1u = u

Basic Definitions, Algorithms and Notation
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Example 1: For all integer 𝑛 ≥ 0,ℝ𝒏 is a vector space.

Example 2:ℝ is a vector space.

Example 3:ℝ𝟐 is a vector space.

Example 4: Let 𝑀𝑛(ℝ) denotes the set of all n×n real matrices, then 𝑀𝑛(ℝ) is a vector space.

Example 5: 𝑀3 ℝ is a vector space.

Basic Definitions, Algorithms and Notation
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Definition: Subspace on ℝ𝒏

Suppose S is a nonempty subset of ℝ𝒏. We say that S is a subspace of ℝ𝒏 if S is a vector 
space under the addition and scalar multiplication as ℝ𝒏.

Example 1: Any vector space has two improper subspaces:{0} and the vector space itself.

Other subspaces are called proper. The set consisting of only the zero vector, {0}, is called the

zero subspace.

Example 2: The nonempty set 𝑺 = 0, 𝑦, 𝑧 |𝑦, 𝑧 ∈ ℝ of ℝ𝟑, is a subspace of vector space ℝ𝟑.

Example 3: For given 𝑨 ∈ ℝ𝒏×𝒏, the solution set of the homogeneous linear system 𝐴𝑥 = 0 is a

subspace of ℝ𝒏×𝒏. This includes all lines, planes, and hyperplanes through the origin.

Example 4: Let 𝑆 ∈ 𝑀𝑛(ℝ) denotes the set of all real symmetric 𝒏 × 𝒏 matrices. Then 𝑆 is a

subspace of 𝑀𝑛(ℝ)

Basic Definitions, Algorithms and Notation
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Theorem: If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and

only if S is closed under the addition and scalar multiplication in V.

Example 1: Let 𝑆 ∈ 𝑀𝑛(ℝ) denotes the set of real symmetric 𝒏 × 𝒏 matrices. Then 𝑆 is a subspace of

𝑀𝑛 ℝ :

Proof:

𝑆 = 𝐴 ∈ 𝑀𝑛 ℝ :𝐴𝑇 = 𝐴

1. 0∈S Obvious.

2. If 𝐴, 𝐵 ∈ S, then 𝐴 + 𝐵 ∈ S:

𝐴 + 𝐵 𝑇 = 𝐴𝑇+𝐵𝑇 = 𝐴 + 𝐵.

3. If 𝐴 ∈ S and k is a scaler then 𝑘𝐴 ∈ S:

𝑘𝐴 𝑇 = 𝑘𝐴𝑇 = 𝑘𝐴.

𝐴 =
−2 3 5
3 4 −6
5 −6 7

➔

𝐴𝑇 =
−2 3 5
3 4 −6
5 −6 7

= 𝐴

𝐴 =
0 0 0
0 0 0
0 0 0

=𝐴𝑇

Basic Definitions, Algorithms and Notation
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Theorem: If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and

only if S is closed under the addition and scalar multiplication in V.

Example 2: The nonempty set 𝑺 = 0, 𝑦, 𝑧 |𝑦, 𝑧 ∈ ℝ of ℝ𝟑, is a subspace of vector space ℝ𝟑.

1. 0,0,0 ∈S Obvious.

2. If 𝐴 = 0, 𝑦1, 𝑧1 , 𝐵 = 0, 𝑦2, 𝑧2 ∈ S, then 𝐴 + 𝐵 ∈ S:

𝐴 + 𝐵 = 0, 𝑦1, 𝑧1 + 0, 𝑦2, 𝑧2 = 0 + 0, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2
= 0, 𝑦, 𝑧 ∈ S

3. If 𝐴 = 0, 𝑦, 𝑧 ∈ S, and k is a scaler then kA ∈ S:

𝑘𝐴 = 𝑘 0, 𝑦, 𝑧 = 0𝑘, 𝑦𝑘, 𝑧𝑘 = 0, 𝑦∗, 𝑧∗ ∈ S

Basic Definitions, Algorithms and Notation

9



Definition: linear combination 
Let 𝑣1, 𝑣2, . . . , 𝑣𝑘 a set of vectors in a vector space ℝ𝒏. A linear combination of 𝑣1, 𝑣2, . . . , 𝑣𝑘 is an 

expression of the form

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘
Where 𝑐1, 𝑐2, . . . , 𝑐𝑘 are scalars.

Question:

What’s the linear combination of 𝑣1 =
1
1

and 𝑣2 =
2
−1

in ℝ𝟐?

𝑐1𝑣1 + 𝑐2𝑣2 = 𝑐1
1
1

+𝑐2
2
−1

=
𝑐1 + 2𝑐2
𝑐1 − 𝑐2

∈ ℝ2,      𝑐1, 𝑐2 ∈ ℝ

𝑣1 =
1
1

𝑣2 =
0
1

𝑣3 =
1
0

𝑐1 = 2, 𝑐2 = 0, 𝑐3 = −1

𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3 =

2
1
1

+0
0
1
− 1

1
0

=

2
2

+
0
0
+

−1
0

=
2 + 0 − 1
2 + 0 + 0

Basic Definitions, Algorithms and Notation
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Definition: span 
The span of 𝑣1, 𝑣2, . . . , 𝑣𝑘 in ℝ𝒏 is the set of all linear combinations of them

𝑠𝑝𝑎𝑛 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘: 𝑐1, 𝑐2, . . . , 𝑐𝑘 ∈ ℝ .

Example 1: The span of a single, nonzero vector 𝒗 ∈ ℝ𝒏 is a line through the origin

𝑠𝑝𝑎𝑛 𝑣 = 𝑐𝑣 ∈ ℝ𝑛: 𝑐 ∈ ℝ

𝑣 =
1
1

𝑐 = 0 ==> 𝑐𝑣 = 0
1
1

=
0
0

𝑐 = −0.5 ==> 𝑐𝑣 = 0.5
1
1

=
−0.5
−0.5

𝑐 = 2 ==> 𝑐𝑣 = 2
1
1

=
2
2

:

Basic Definitions, Algorithms and Notation
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Theorem:
Let 𝑣1, 𝑣2, . . . , 𝑣𝑘 a set of vectors in a vector space ℝ𝒏. The span of 𝑣1, 𝑣2, . . . , 𝑣𝑘 is a subspace of ℝ𝒏.

Question:

What’s the span of 𝑣1 =
1
1

and 𝑣2 =
2
−1

in ℝ𝟐?

𝑠𝑝𝑎𝑛 𝑣1,𝑣2 = 𝑐1𝑣1 + 𝑐2𝑣2: 𝑐1, 𝑐2 ∈ ℝ

= 𝑐1
1
1

+𝑐2
2
−1

: 𝑐1, 𝑐2 ∈ ℝ

=
𝑐1 + 2𝑐2
𝑐1 − 𝑐2

: 𝑐1, 𝑐2 ∈ ℝ

= ℝ𝟐

Basic Definitions, Algorithms and Notation
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Definition: linearly independent 
A set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 from vector space ℝ𝒏 is said to be linearly independent, if no vector 

in the set can be written in this way, then the vectors are said to be linearly independent; or if linear 

combination of, 𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘 = 𝟎, results that all scalers 𝑐1, 𝑐2, . . . and 𝑐𝑘are zero. 

Example.

𝑣1 =
1
2
, 𝑣2 =

2
3
: 𝑖𝑓 𝑐1𝑣1 + 𝑐2𝑣2 = 𝟎 ⟹ 𝑐1 = 𝑐2 = 𝟎

Definition: linearly dependent 
A set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 from vector space ℝ𝒏 is said to be linearly dependent if at least one 

of the vectors in the set can be defined as a linear combination of the others ; or if there exist scalers 𝑐1, 

𝑐2, . . . , 𝑐𝑘, not all zero, such that 

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘 = 𝟎.
Example.

𝑣 =
1
2

𝑢 =
2
3

𝑡 =
5
8

⟹ 𝑡 = 𝑣 + 2𝑣

Basic Definitions, Algorithms and Notation

13



Definition: rank of a matrix 
The rank of a matrix is defined as 

(a) the maximum number of linearly independent column vectors in the matrix or 

(b) the maximum number of linearly independent row vectors in the matrix.

Both definitions are equivalent.   

Definition: rank of a matrix 
The rank of a matrix is defined as the number of leading 1s in rref(A).

𝐴 =
1 2 3
2 8 20
4 8 12

𝑟𝑟𝑒𝑓 𝐴 =
1 0 −4
0 1 3.5
0 0 0

Basic Definitions, Algorithms and Notation
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Theorem: If A∈ ℝ𝒎×𝒏,P ∈ ℝ𝒎×𝒎 and Q∈ ℝ𝒏×𝒏, P and Q invertible, then

(a) rank(AQ )=rank(A),

(b) rank(PA )=rank(A),

(c) rank(PA𝑄 )=rank(A).

Corollary: Elementary row and column operations on a matrix are rank-preserving.

Basic Definitions, Algorithms and Notation
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Matrix Representation

𝐴 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯
⋮
𝑎𝑖𝑛
⋮

⋯ 𝑎𝑚𝑛

∈ ℝ𝑚×𝑛
Element wise:

Row partition:

Column partition:

𝐴 =

𝑟1
𝑇

𝑟2
𝑇

⋮
𝑟𝑚
𝑇

𝐴 = 𝑐1 𝑐2 ⋯ 𝑐𝑛

𝑟𝑖 =

𝑎𝑖1
𝑎𝑖2
⋮
𝑎𝑖𝑛

∈ ℝ𝑛

𝑐𝑗 =

𝑎1𝑗
𝑎2𝑗
⋮

𝑎𝑚𝑗

∈ ℝ𝑚
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matrix-vector multiplication  Ax

Inner products of the rows of A with x

Low Level (for computing):

High Level (for understanding):

Combination of the columns of A
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matrix-vector multiplication 

Ax Using Inner products 

Inner products of the rows of A with x

Low Level (for computing):

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯
⋮
𝑎𝑖𝑛
⋮

⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

𝑦𝑖 is the inner product of the ith row with the vector x

𝑦𝑖 = ෍

𝑘=1

𝑛

𝑎𝑖𝑘𝑥𝑗

=

𝑦1
𝑦2
⋮
𝑦𝑖
⋮
𝑦𝑚
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matrix-vector multiplication 

Ax Using Inner products 

Inner products of the rows of A with x

Low Level (for computing):

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯
⋮
𝑎𝑖𝑛
⋮

⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

𝑦1 is the inner product of the first row with the vector x

𝑦1 = ෍

𝑘=1

𝑛

𝑎1𝑘𝑥𝑗

=

𝑦1
𝑦2
⋮
𝑦𝑖
⋮
𝑦𝑚
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matrix-vector multiplication 

Ax Using Inner products 

Inner products of the rows of A with x

Low Level (for computing):

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯
⋮
𝑎𝑖𝑛
⋮

⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

𝑦2 is the inner product of the second row with the vector x

𝑦2 = ෍

𝑘=1

𝑛

𝑎2𝑘𝑥𝑗

=

𝑦1
𝑦2
⋮
𝑦𝑖
⋮
𝑦𝑚
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matrix-vector multiplication 

Ax Using Inner products 

Inner products of the rows of A with x

Low Level (for computing):

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯
⋮
𝑎𝑖𝑛
⋮

⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

𝑦𝑚 is the inner product of the mth row with the vector x

𝑦𝑚 = ෍

𝑘=1

𝑛

𝑎𝑚𝑘𝑥𝑗

=

𝑦1
𝑦2
⋮
𝑦𝑖
⋮
𝑦𝑚
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=

෍

𝑘=1

3

𝑎1𝑘𝑥𝑘

෍

𝑘=1

3

𝑎2𝑘𝑥𝑘

෍

𝑘=1

3

𝑎3𝑘𝑥𝑘

𝐴𝑥 =
1 2
3 4
5 6

−1
4

𝐸𝑥𝑎𝑚𝑝𝑙𝑒:

=
7
13
19

≔ 𝑦=

1 2
−1
4

3 4
−1
4

5 6
−1
4

matrix-vector multiplication 

Ax Using Inner products 

𝑦𝑖 is the inner product of the ith row with the vector x

𝑦𝑖 = ෍

𝑘=1

𝑛

𝑎𝑖𝑘𝑥𝑗

22



matrix-vector multiplication 

Ax Using Columns of A

High Level (for understanding):

Combination of the columns of A
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matrix-vector multiplication 

Ax Using Columns of A

𝐴𝑥 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋯ 𝑎2𝑗 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋮ ⋮
⋯ 𝑎𝑚𝑗 ⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛

=

𝑦1
𝑦2
⋮
𝑦𝑚
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𝐴𝑥 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋯ 𝑎2𝑗 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋮ ⋮
⋯ 𝑎𝑚𝑗 ⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛

matrix-vector multiplication 

Ax Using Columns of A

𝑦 = 𝐴(𝑐1)𝑥1 +

𝑦 is a combination of the columns of 𝐴

=

𝑦1
𝑦2
⋮
𝑦𝑚
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𝐴𝑥 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋯ 𝑎2𝑗 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋮ ⋮
⋯ 𝑎𝑚𝑗 ⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛

matrix-vector multiplication 

Ax Using Columns of A

𝑦 = 𝐴(𝑐1)𝑥1 + 𝐴(𝑐2)𝑥2 +

𝑦 is a combination of the columns of 𝐴

=

𝑦1
𝑦2
⋮
𝑦𝑚
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𝐴𝑥 =

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋯ 𝑎2𝑗 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋮ ⋮
⋯ 𝑎𝑚𝑗 ⋯ 𝑎𝑚𝑛

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛

matrix-vector multiplication 

Ax Using Columns of A

𝑦 = 𝐴(𝑐1)𝑥1 + 𝐴(𝑐2)𝑥2 +⋯+ 𝐴(𝑐𝑛)𝑥𝑛

𝑦 is a combination of the columns of 𝐴

=

𝑦1
𝑦2
⋮
𝑦𝑚
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matrix-vector multiplication 

Ax Using Columns of A

𝑦 = 𝐴(𝑐1)𝑥1 + 𝐴(𝑐2)𝑥2 +⋯+ 𝐴(𝑐𝑛)𝑥𝑛

= −1
1
3
5

𝑦 is a combination of the columns of 𝐴

𝐸𝑥𝑎𝑚𝑝𝑙𝑒:

=
−1
−3
−5

+

=
7
13
19

+4
2
4
6

8
16
24

𝐴𝑥 =
1 2
3 4
5 6

−1
4

28



Matrix times Matrix:

❖ Inner products

❖ Outer product
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=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

𝑐𝑖𝑗 ⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯

⋮
𝑎𝑖𝑝
⋮

⋯ 𝑎𝑚𝑝

Matrix times Matrix:

by inner products 

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑗 ⋯ 𝑏1𝑛
⋯ 𝑏2𝑗 ⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋮ ⋮
⋯ 𝑏𝑝𝑗 ⋯ 𝑏𝑝𝑛

𝑐𝑖𝑗 is the inner product of the ith row with the jth column

𝑐𝑖𝑗 = ෍

𝑘=1

𝑝

𝑎𝑖𝑘𝑏𝑘𝑗
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=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

𝑐𝑖𝑗 ⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯

⋮
𝑎𝑖𝑝
⋮

⋯ 𝑎𝑚𝑝

Matrix times Matrix:

by inner products 

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑗 ⋯ 𝑏1𝑛
⋯ 𝑏2𝑗 ⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋮ ⋮
⋯ 𝑏𝑝𝑗 ⋯ 𝑏𝑝𝑛

𝑐𝑖𝑗 is the inner product of the ith row with the jth column

𝑐11 = ෍

𝑘=1

𝑝

𝑎1𝑘𝑏𝑘1
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=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

𝑐𝑖𝑗 ⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯

⋮
𝑎𝑖𝑝
⋮

⋯ 𝑎𝑚𝑝

Matrix times Matrix:

by inner products 

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑗 ⋯ 𝑏1𝑛
⋯ 𝑏2𝑗 ⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋮ ⋮
⋯ 𝑏𝑝𝑗 ⋯ 𝑏𝑝𝑛

𝑐𝑖𝑗 is the inner product of the ith row with the jth column

𝑐21 = ෍

𝑘=1

𝑝

𝑎2𝑘𝑏𝑘1
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=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

𝑐𝑖𝑗 ⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮
𝑎𝑖1
⋮

⋮
𝑎𝑖2
⋮

𝑎𝑚1 𝑎𝑚2

⋯

⋮
𝑎𝑖𝑝
⋮

⋯ 𝑎𝑚𝑝

Matrix times Matrix:

by inner products 

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑗 ⋯ 𝑏1𝑛
⋯ 𝑏2𝑗 ⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋮ ⋮
⋯ 𝑏𝑝𝑗 ⋯ 𝑏𝑝𝑛

𝑐𝑖𝑗 is the inner product of the ith row with the jth column

𝑐𝑚𝑛 = ෍

𝑘=1

𝑝

𝑎𝑚𝑘𝑏𝑘𝑛

33



Matrix times Matrix:

by inner products 

=

෍

𝑘=1

3

𝑎1𝑘𝑏𝑘1 ෍

𝑘=1

3

𝑎1𝑘𝑏𝑘2

෍

𝑘=1

3

𝑎2𝑘𝑏𝑘1 ෍

𝑘=1

3

𝑎2𝑘𝑏𝑘2

෍

𝑘=1

3

𝑎3𝑘𝑏𝑘1 ෍

𝑘=1

3

𝑎3𝑘𝑏𝑘2

1 2
3 4
5 6

−1 2
4 −3

𝐸𝑥𝑎𝑚𝑝𝑙𝑒:

=
7 −4
13 −6
19 −8

𝑐𝑖𝑗 is the inner product of the ith row with the jth column

𝑐𝑖𝑗 = ෍

𝑘=1

𝑝

𝑎𝑖𝑘𝑏𝑘𝑗

=

1 2
−1
4

1 2
2
−3

3 4
−1
4

3 4
2
−3

5 6
−1
4

5 6
2
−3
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=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑝

Matrix times Matrix:

by outer products 

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑛
⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋱ ⋮
⋯ 𝑏𝑝𝑛

𝐶 is a sum of outer products of the columns of 𝐴 with the rows of 𝐵
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Matrix times Matrix:

by outer products 

=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑝

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑛
⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋱ ⋮
⋯ 𝑏𝑝𝑛

𝐶 = 𝐴(𝑐1)𝐵(𝑟1) +

𝐶 is a sum of outer products of the columns of 𝐴 with the rows of 𝐵
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Matrix times Matrix:

by outer products 

𝐶 = 𝐴(𝑐1)𝐵(𝑟1) + 𝐴(𝑐2)𝐵(𝑟2) +

=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑝

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑛
⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋱ ⋮
⋯ 𝑏𝑝𝑛

𝐶 is a sum of outer products of the columns of 𝐴 with the rows of 𝐵
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Matrix times Matrix:

by outer products 

𝐶 = 𝐴(𝑐1)𝐵(𝑟1) + 𝐴(𝑐2)𝐵(𝑟2) +⋯+ 𝐴(𝑐𝑝)𝐵(𝑟𝑝)

=

𝑐11 𝑐12
𝑐21 𝑐22

⋯ 𝑐1𝑛
⋯ 𝑐2𝑛

⋮ ⋮
𝑐𝑚1 𝑐𝑚2

⋮
⋯ 𝑐𝑚𝑛

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑝
⋯ 𝑎2𝑝

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑝

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑛
⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑝1 𝑏𝑝2

⋱ ⋮
⋯ 𝑏𝑝𝑛

𝐶 is a sum of outer products of the columns of 𝐴 with the rows of 𝐵
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Matrix times Matrix:

by outer products 

𝐶 = 𝐴(𝑐1)𝐵(𝑟1) + 𝐴(𝑐2)𝐵(𝑟2)

=
1
3
5

−1 2
1 2
3 4
5 6

−1 2
4 −3

𝐶 is a sum of outer products of the columns of 𝐴 with the rows of 𝐵

𝐸𝑥𝑎𝑚𝑝𝑙𝑒:

=
−1 2
−3 6
−5 10

+

=
7 −4
13 −6
19 −8

+
2
4
6

4 −3

8 −6
16 −12
24 −18
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