

Dr. Ali Valinejad

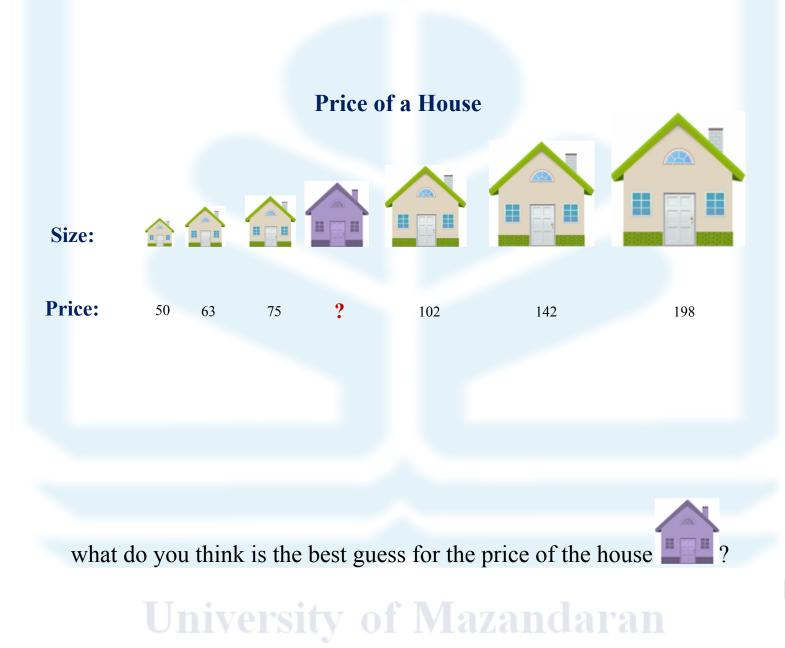
valinejad.ir valinejad@umz.ac.ir **Mazandaran** University

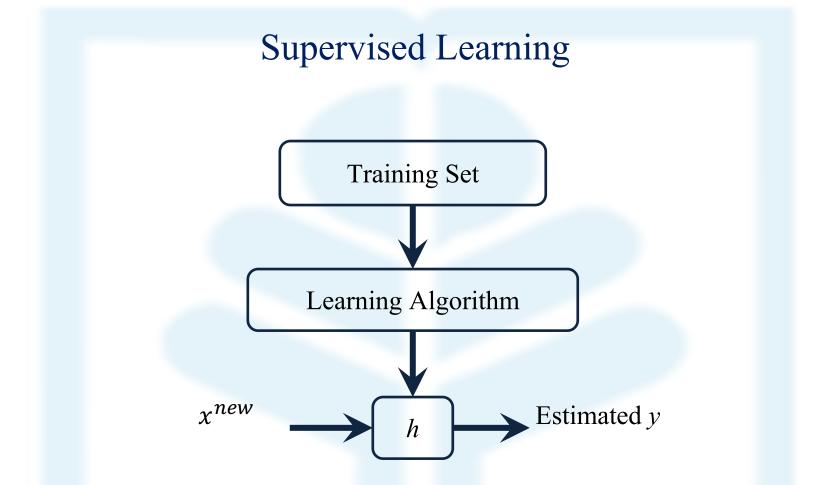
Outline:

- Supervised Learning
- Linear Regression
- Normal equations
- Gradient descent
 - Batch Gradient Descent
 - Stochastic Gradient Descent
 - Mini-Batch Gradient Descent
- Linear Regression: Probabilistic interpretation
- Locally weighted linear regression

Supervised Learning

Supervised Learning





In order to design a learning algorithm, we have to answer the following question:

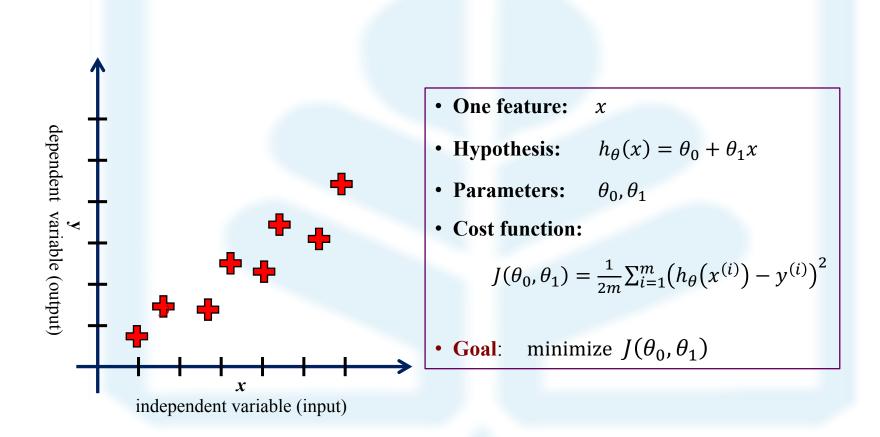
How we want to represent Hypothesis?

University of Mazandaran

v new

Linear Regression

Linear Regression (One Variable)

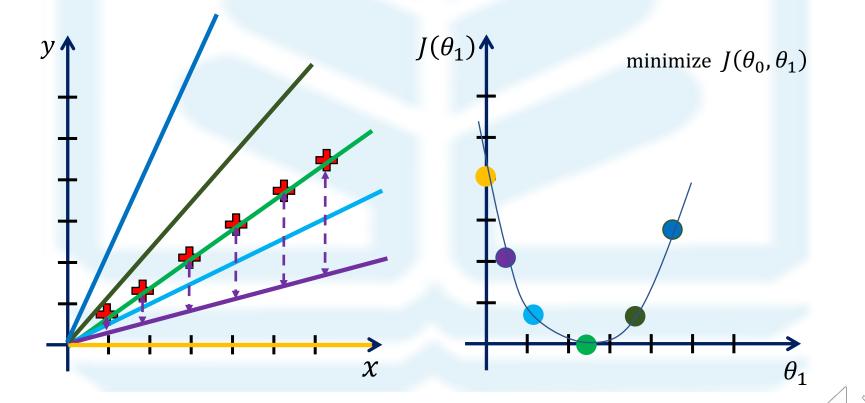


Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y).

Linear Regression (One Variable)

Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Assume $\theta_0 = 0$, so $h_{\theta}(x) = \theta_1 x$ and $J(\theta_0, \theta_1) = J(\theta_1)$



Linear Regression (Multiple Variables)

- Multiple features: x_1, x_2, \dots, x_n
- Hypothesis: $x_0 \coloneqq 1 \Rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta^{\top} x$
- **Parameters:** $\theta_0, \theta_1, \dots, \theta_n$
- Cost function:

$$J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

• **Goal**: minimize
$$J(\boldsymbol{\theta}) \coloneqq J(\theta_0, \theta_1, \dots, \theta_n)$$

• Learning

- Solving normal equation $\boldsymbol{\theta} = (X^{\top}X)^{-1}X^{\top}y$
- Gradient descent

• Inference

$$\hat{y} = h_{\theta}(x^{\text{test}}) = \boldsymbol{\theta}^{\mathsf{T}} x^{\text{test}}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$

Given a training set

$x_1^{(i)}$		$x_n^{(i)}$	$y^{(i)}$
$x_1^{(1)}$		$x_n^{(1)}$	<i>y</i> ⁽¹⁾
$x_1^{(2)}$		$x_n^{(2)}$	<i>y</i> ⁽²⁾
•	•.	:	•
$x_1^{(m)}$		$x_n^{(m)}$	$y^{(m)}$

set
$$x_0^{(i)} = 1$$
, $i = 1, 2, ..., m$

$x_0^{(i)}$	$x_1^{(i)}$		$x_n^{(i)}$	<i>y</i> ^(<i>i</i>)
1	$x_1^{(1)}$		$x_n^{(1)}$	<i>y</i> ⁽¹⁾
1	x ₁ ⁽²⁾		$x_n^{(2)}$	y ⁽²⁾
:	:	•	:	
1	$x_1^{(m)}$		$x_n^{(m)}$	<i>y</i> ^(<i>m</i>)

Given a training set, define the design matrix X

$$X := \begin{bmatrix} - (x^{(1)})^T - \\ - (x^{(2)})^T - \\ \vdots \\ - (x^{(m)})^T - \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}$$

where

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

set:

$$y := \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m \qquad \theta := \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$\begin{aligned} x^{(i)} &= \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \quad X := \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad y := \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \quad \theta := \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \\ h_{\theta}(x) &= x^{-1} \\ h_{\theta}(x) &= x^{-1} \\ h_{\theta}(x) &= x^{-1} \\ h_{\theta}(x) &= x^{-1} \\ h_{\theta}(x^{(i)}) &= (x^{(i)})^{-1} \\ h_{\theta}(x^{(i)}) - y^{(i)} \\ H_{\theta}(x^{(i)} - y^{(i)})^{-1} \\ H_{\theta}(x^{(i)}$$

$$\Rightarrow \nabla_{\theta} J(\theta) = \frac{1}{m} (X^T X \theta - X^T y)$$

if
$$\nabla_{\theta} J(\theta^*) = \mathbf{0}$$
 then $\theta^* = (X^T X)^{-1} X^T y$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Examples: m = 5.

	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$10	000)
x_0	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1	852	2	1	36	178	200
1	3000	4	1	38	540	en
$X = \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}$	$\begin{array}{ccc} 2104 & 5 \\ 1416 & 3 \\ 1534 & 3 \\ 852 & 2 \\ 3000 & 4 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$y = \begin{bmatrix} 460\\232\\315\\178\\540 \end{bmatrix}$			And Man Man Market

 $\theta^* = (X^T X)^{-1} X^T y$

$$\theta^* = (X^T X)^{-1} X^T y$$

What if $X^T X$ is non-invertible?

* Redundant features (linearly dependent).

e.g. if $x_1 = size(in feet^2)$ and $x_2 = size(in m^2)$ then x_1 and x_2 are linearly independent. x_1 can be removed.

★ Too many features (e.g. #training example ≤ #features).
 Delete some features, or use regularization.

University of Mazandaran

and the March

Gradient descent to minimize $J(\theta)$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

 $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Gradient Descent

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$\theta_j \coloneqq \theta_j - \frac{\alpha}{\alpha} \frac{\partial J(\theta)}{\partial \theta_j}$$

For a single training example (m = 1),

$$\theta_j \coloneqq \theta_j - \alpha \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$$

This rule is called the LMS (*least mean squares*) update rule, and is also known as the Widrow-Hoff learning rule.

Gradient descent to minimize $J(\theta)$

Three types of gradient descents

o Batch Gradient Descent:

Parameters are updated after computing the gradient of error with respect to the *entire training set*

• Stochastic Gradient Descent(SGD):

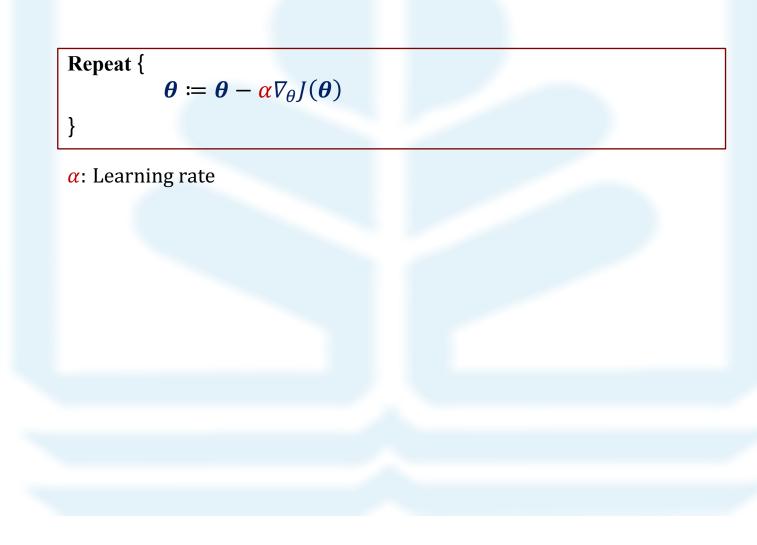
Parameters are updated after computing the gradient of error with respect to a *single training example*

• Mini Batch Gradient Descent:

Parameters are updated after computing the gradient of error with respect to a *subset of the training set*

Gradient descent to minimize $J(\theta)$

Batch Gradient Descent



Repeat {

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} - \boldsymbol{\alpha} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

 α : Learning rate

Repeat {

}

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

(simultaneously update θ_j for every j = 0, 1, ..., n)

Repeat {

$$\theta_{0} \coloneqq \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$$
(simultaneously update for every $j = 0, 1, ..., n$)

This rule is called the Least Mean Squares (LMS) update rule for a training set of *m* data points, which is also known as the Widrow-Hoff learning rule.

```
def gradient descent(X, y, theta, learning rate, iterations):
  m, n = X.shape
  n = n-1
  cost history = np.zeros(iterations)
  theta history = np.zeros((iterations, n))
  for it in range(iterations):
      prediction = np.dot(X, theta)
      theta = theta -(1/m)*learning rate*(X.T.dot((prediction - y)))
      theta history[it,:] = theta.T
      cost history[it] = cal cost(theta, X, y)
  return theta, cost history, theta history
def cal cost(theta, X, y):
     Calculates the cost for given theta, X and Y.) "
  ....
  m = len(y)
  predictions = X.dot(theta)
  cost = 1/(2*m) * np.sum(np.square(predictions-y))
  return cost
```


Gradient descent to minimize $J(\theta)$

Stochastic Gradient Descent(SGD)

Stochastic Gradient Descent

Randomly shuffle(reorder) examples in training set

Repeat {

for *i*=1 to *m* {

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \Big[\big(h_{\theta} \big(x^{(i)} \big) - y^{(i)} \big) x_j^{(i)} \Big]$$

(simultaneously update for every j = 0, 1, ..., n)

Stochastic Gradient Descent

Randomly shuffle(reorder) examples in training set

Repeat {

for *i*=1 to *m* { $\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} (h_\theta(x^{(i)}) - y^{(i)})$ $\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} [(h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}]$

(simultaneously update for every j = 0, 1, ..., n)

Stochastic Gradient Descent

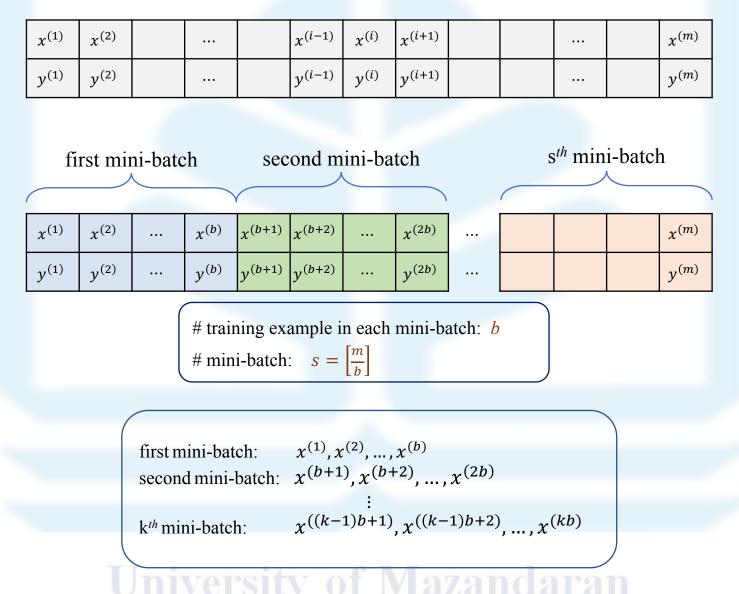
```
def stocashtic gradient descent(X, y, theta, learning rate, iterations):
  m = len(y)
  cost history = np.zeros(iterations)
  for it in range(iterations):
     \cos t = 0.0
     for i in range(m):
        rand ind = np.random.randint(0, m)
        X_i = X[rand ind,:].reshape(1, X.shape[1])
       y_i = y[rand ind].reshape(1, 1)
        prediction = np.dot(X_i, theta)
        theta = theta -(1/m)*learning rate*(X<sub>i</sub>.T.dot((prediction - y<sub>i</sub>)))
        cost += cal cost(theta, X_i, y_i)
     cost history[it] = cost
  return theta, cost history
def cal cost(theta, X, y):
     Calculates the cost for given theta, X and Y.) "
  m = len(y)
  predictions = X.dot(theta)
  cost = 1/(2*m) * np.sum(np.square(predictions-y))
  return cost
```


Gradient descent to minimize $J(\theta)$

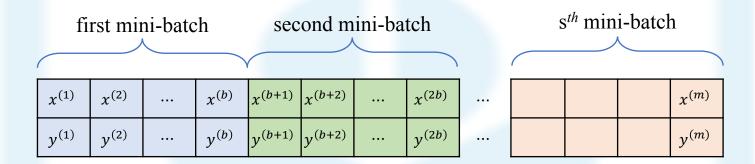
Mini Batch Gradient Descent(SGD)

Mini-Batch Gradient Descent

Given training set:



Mini-Batch Gradient Descent



Repeat {

Randomly shuffle(reorder) examples in training set

partition new training set into $s = \left[\frac{m}{b}\right]$ mini-batches of size b

for k=1 to s {

set
$$X^{\{k\}} = \{x^{((k-1)b+1)}, x^{((k-1)b+2)}, \dots, x^{(kb)}\}$$

set $Y^{\{k\}} = \{y^{((k-1)b+1)}, y^{((k-1)b+2)}, \dots, y^{(kb)}\}$
 $\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{b} \sum_{i=1}^{b} (h_\theta(X^{\{k\}}(i)) - Y^{\{k\}}(i))$

$$\theta_j \coloneqq \theta_0 - \alpha \frac{1}{b} \sum_{i=1}^{k} \left(h_\theta \left(X^{\{k\}}(i) \right) - Y^{\{k\}}(i) \right) X^{\{k\}}(i,j)$$

(simultaneously update for every j = 0, 1, ..., n)

 $X^{\{k\}}(i,j) \coloneqq x_j^{((k-1)b+i)}$ $Y^{\{k\}}(i) \coloneqq y^{((k-1)b+i)}$

Mini-Batch Gradient Descent

```
def mini batch gradient descent(X, y, theta, learning rate, iterations, batch size):
  m = len(y)
  cost history = np.zeros(iterations)
  n batches = int(m/batch size)
  for it in range(iterations):
     cost = 0.0
     indices = np.random.permutation(m)
     X = X[indices]
     y = y[indices]
     for i in range(0, m, batch size):
       X_i = X[i:i+batch size]
       Y_i = y[i:i+batch size]
       X_i = np.c [np.ones(len(X_i)), X_i]
       prediction = np.dot(X i, theta)
       theta = theta -(1/m)*learning rate*(X<sub>i</sub>.T.dot((prediction - Y<sub>i</sub>)))
       cost += cal cost(theta, X_i, Y_i)
     cost history[it] = cost
  return theta, cost history
def cal cost(theta, X, y):
      Calculates the cost for given theta, X and Y.)
   •••
   m = len(y)
   predictions = X.dot(theta)
   cost = 1/(2*m) * np.sum(np.square(predictions-y))
   return cost
```

Gradient Descent

Batch Gradient Descent	Stochastic Gradient Descent	Mini-Batch Gradient Descent	
Since entire training data is considered before taking a step in the direction of gradient, therefore it takes a lot of time for making a single update.	Since only a single training example is considered before taking a step in the direction of gradient, we are forced to loop over the training set and thus cannot exploit the speed associated with vectorizing the code.	Since a subset of training examples is considered, it can make quick updates in the model parameters and can also exploit the speed associated with vectorizing the code.	
It makes smooth updates in the model parameters	It makes <i>very noisy</i> updates in the parameters	Depending upon the batch size, the updates can be made <i>less noisy</i> – greater the batch size less noisy is the update	

Thus, mini-batch gradient descent makes a compromise between the speedy convergence and the noise associated with gradient update which makes it a more flexible and robust algorithm.

Linear Regression

Probabilistic interpretation

Assumptions:

1- There is a linear relationship between target variables $y^{(i)}$ and the inputs $\mathbf{x}^{(i)}$ via the equation $y^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_n x_n^{(i)} + \epsilon^{(i)} = \boldsymbol{\theta}^T x^{(i)} + \epsilon^{(i)}$

2- For i = 1, 2, ..., m, $\epsilon^{(i)}$ are distributed **iid** (independently and identically distributed) according to a Gaussian distribution with *mean zero* and some *variance* σ^2 , i.e. $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$

 $\epsilon^{(i)}$ is an error term that captures either unmodeled effects (such as if there are some features very pertinent to predicting, but that we'd left out of the regression), or random noise.

Based on above probabilistic assumption in a regression problem,

- why might *linear regression*, be a reasonable choice?
- why might the *least-squares cost function* $J(\theta)$, be a reasonable choice?

 $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ implies that the *density* of $\epsilon^{(i)}$ is given by

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\epsilon^{(i)})^2}{2\sigma^2}}$$

 $\mathbb{E}[\epsilon^{(i)}] = 0 \implies \mathbb{E}[y^{(i)} - \boldsymbol{\theta}^T x^{(i)}] = 0$

 $\operatorname{Var}[\epsilon^{(i)}] = \sigma^2 \Rightarrow \operatorname{Var}[y^{(i)} - \boldsymbol{\theta}^T x^{(i)}] = \sigma^2$

$$p(y^{(i)} - \boldsymbol{\theta}^T x^{(i)}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \boldsymbol{\theta}^T x^{(i)})^2}{2\sigma^2}}$$

$$\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$$
 implies that the *density* of $\epsilon^{(i)}$ is given by
$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\epsilon^{(i)})^2}{2\sigma^2}}$$

Since $\theta^T x^{(i)}$ is *constant* given $x^{(i)}$ and $\epsilon^{(i)}$ has a mean of zero, $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$ implies that

$$\mathbb{E}[y^{(i)}|x^{(i)};\boldsymbol{\theta}] = \mathbb{E}[\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{\epsilon}^{(i)}|x^{(i)};\boldsymbol{\theta}] = \boldsymbol{\theta}^T x^{(i)} + \mathbb{E}[\boldsymbol{\epsilon}^{(i)}|x^{(i)};\boldsymbol{\theta}] = \boldsymbol{\theta}^T x^{(i)}$$
$$\operatorname{Var}[y^{(i)}|x^{(i)};\boldsymbol{\theta}] = \operatorname{Var}[\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{\epsilon}^{(i)}|x^{(i)};\boldsymbol{\theta}] = \operatorname{Var}[\boldsymbol{\epsilon}^{(i)}|x^{(i)};\boldsymbol{\theta}] = \sigma^2$$

Since $\theta^T x^{(i)}$ is *constant* given $x^{(i)}$ and $\epsilon^{(i)}$ has a mean of zero. Similarly, $y^{(i)}$ does not necessarily have a normal distribution in this type of linear regression model, but the assumptions imply that the conditional distribution of $y^{(i)}$ given $x^{(i)}$ is normally distributed with mean $\theta^T x^{(i)}$ and standard deviation σ .

$$p(y^{(i)}|x^{(i)};\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)}-\boldsymbol{\theta}^T x^{(i)})^2}{2\sigma^2}}$$

So, We can write the distribution of $y^{(i)}$ as

 $y^{(i)}|x^{(i)}; \theta \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$

$$p(y^{(i)}|x^{(i)}; \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \boldsymbol{\theta}^T x^{(i)})^2}{2\sigma^2}}$$

Given X (the design matrix, which contains all the $x^{(i)}$'s) and $\boldsymbol{\theta}$, what is the distribution of the $\mathbf{y} = [y^{(1)}, y^{(2)}, ..., y^{(m)}]^{\mathrm{T}}$,?

- Given any data set $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$, the probability of the data is given by $p(y|X; \theta)$. This quantity is typically viewed as a function of y (and perhaps X), for a fixed value of θ .
- When we wish to explicitly view this as a function of θ, we will instead call it the *likelihood function*:

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; X, \boldsymbol{y}) = p(\boldsymbol{y}|X; \boldsymbol{\theta})$$

by the independence assumption on the $\epsilon^{(i)}$'s (and hence also the $y^{(i)}$'s given the $x^{(i)}$'s), this can also be written

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \boldsymbol{\theta})$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \boldsymbol{\theta}^{T} x^{(i)})^{2}}{2\sigma^{2}}}$$

Maximum Likelihood

The principal of maximum likelihood says that we should choose θ so as to make the data as high probability as possible. i.e., we should choose θ to maximize $L(\theta)$.

 $\theta^* = \operatorname*{argmax}_{\theta} L(\theta)$

Instead of maximizing $L(\theta)$, we can also maximize any strictly increasing function of $L(\theta)$

 $\boldsymbol{l}(\theta) \coloneqq \log L(\theta)$

 $\theta^* = \operatorname*{argmax}_{\theta} l(\theta)$

$$l(\boldsymbol{\theta}) := \log L(\boldsymbol{\theta})$$

$$= \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \boldsymbol{\theta})$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^{(i)} - \boldsymbol{\theta}^T x^{(i)})^2}{2\sigma^2}}$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y^{(i)} - \boldsymbol{\theta}^T x^{(i)})^2$$

$$\Rightarrow \qquad \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) \text{ is equivalent to } \min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \boldsymbol{\theta}^T x^{(i)})^2$$

$$\Rightarrow \qquad \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) \text{ is equivalent to } \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

• Under the previous probabilistic assumptions on the data, least-squares regression corresponds to finding the maximum likelihood estimate of θ .

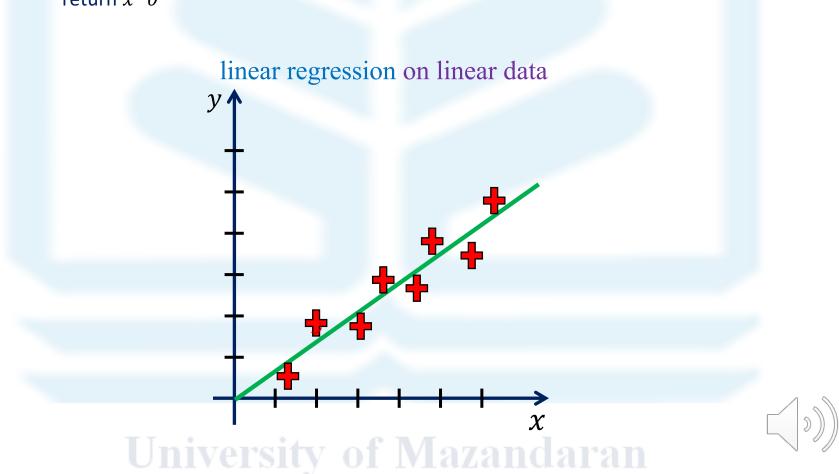
Linear Regression

Locally weighted linear regression

Training phase:

Compute θ to minimize $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

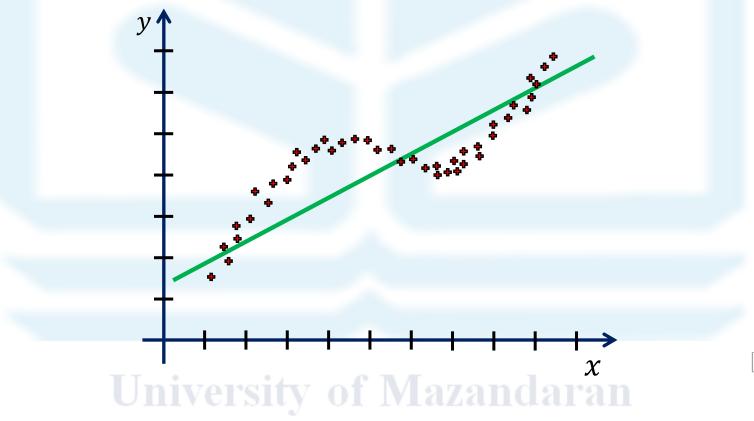
Predict output: return $x^{\top}\theta$



Training phase:

Compute θ to minimize $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Predict output: return $x^{\top}\theta$



- Locally weighted linear regression is a non-parametric algorithm, that is, the model does not learn a fixed set of parameters as is done in ordinary linear regression.
- Parameters θ are computed *individually* for each *query point* x.
- While computing θ, a *higher preference* is given to the points in the training set lying in the *vicinity* of x than the points lying far away from x.

The modified cost function is:

$$J(\boldsymbol{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} \boldsymbol{\omega}^{(i)} \left(\boldsymbol{h}_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)^2$$

The modified cost function is:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \boldsymbol{\omega}^{(i)} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)^2$$

- where, $\boldsymbol{\omega}^{(i)}$ is a non-negative "weight" associated with training point $\boldsymbol{x}^{(i)}$.
- For $x^{(i)}$ s lying closer to the query point x, the value of $\omega^{(i)}$ is *large*,
- For $x^{(i)}$ s lying far away from x the value of $\omega^{(i)}$ is *small*.

Thus, the training-set-points lying *closer* to the query point *x contribute* more to the cost $J(\theta)$ than the points lying far away from *x*.

A typical choice of $\omega^{(i)}$ is:

$$w^{(i)} = e^{-\frac{(x^{(i)}-x)^2}{2\tau^2}}$$

• where, τ is called the *bandwidth parameter* and controls the *rate* at which $\omega^{(i)}$ falls with distance from x

Training phase:

Compute θ to minimize $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \boldsymbol{\omega}^{(i)} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Predict output: return $x^{\top}\theta$

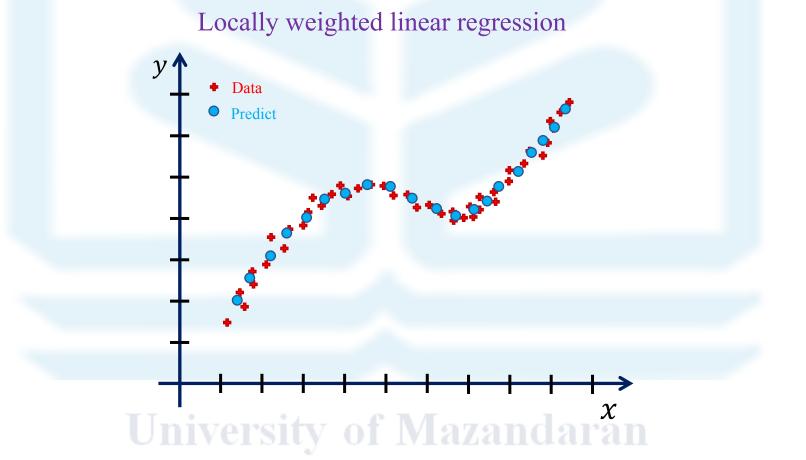
Points to remember:

- Locally weighted linear regression is a supervised learning algorithm.
- ✤ It is a non-parametric algorithm.
- There exists No training phase.
- ✤ All the work is done during the testing phase/while making predictions.

Training phase:

Compute θ to minimize $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \boldsymbol{\omega}^{(i)} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Predict output: return $x^{\top}\theta$



References

https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/ https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/ https://www.holehouse.org/mlclass/04_Linear_Regression_with_multiple_variables.html Andrew Ng, https://www.coursera.org/learn/machine-learning

