
Dr. Ali Valinejad
 valinejad.ir

 valinejad@umz.ac.ir

Machine Learning

به نام او، به یاد او، براي او

𝜕
𝜕𝜃#

𝐽 𝜃# < 0
𝜕
𝜕𝜃#

𝐽 𝜃# > 0

𝜕
𝜕𝜃#

𝐽 𝜃# = 0

𝐽 𝜃#

𝜃#

Linear Regression

v Supervised Learning

v Linear Regression

v Normal equations

v Gradient descent
o Batch Gradient Descent
o Stochastic Gradient Descent
o Mini-Batch Gradient Descent

v Linear Regression: Probabilistic interpretation
v Locally weighted linear regression

Outline:

Supervised Learning

?

Price of a House

50 63 75 102 142 198

Size:

Price:

what do you think is the best guess for the price of the house ?

Supervised Learning

Supervised Learning

Training Set

Learning Algorithm

h𝑥*+, Estimated y

How we want to represent Hypothesis?

In order to design a learning algorithm, we have to answer the following question:

Linear Regression

ر

y
dependent variable (output)

x
independent variable (input)

Idea: Choose so that is close to y for our training examples (x,y). 𝜃-, 𝜃# ℎ0(𝑥)

Linear Regression (One Variable)

• One feature: 𝑥

• Hypothesis: ℎ0 𝑥 = 𝜃- + 𝜃#𝑥

• Parameters: 𝜃-, 𝜃#
• Cost function:

𝐽 𝜃-, 𝜃# = #
45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

• Goal: 				minimize 	𝐽 𝜃-, 𝜃#

Assume		𝜃- = 0, 𝑠𝑜	ℎ0 𝑥 = 𝜃#𝑥 and 𝐽 𝜃-, 𝜃# = 𝐽 𝜃#

𝑦

𝑥

𝐽 𝜃#

𝜃#

Cost function: 𝐽 𝜃-, 𝜃# = #
45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

Linear Regression (One Variable)

minimize 	𝐽 𝜃-, 𝜃#

• Learning

v Solving normal equation 𝜽 = (𝑋H𝑋)I#𝑋H𝑦

v Gradient descent

• Inference
𝑦J = ℎ0 𝑥KLMK = 𝜽H𝑥KLMK

Linear Regression (Multiple Variables)

• Multiple features: 𝑥#, 𝑥4, … , 𝑥*

• Hypothesis: 𝑥- ≔ 1	 ⇒ 	 ℎ0 𝑥 = 𝜃- + 𝜃#𝑥# + 𝜃4𝑥4 + ⋯+ 𝜃*𝑥* = 𝜽H𝑥

• Parameters: 𝜃-, 𝜃#, … , 𝜃*

• Cost function:

𝐽 𝜃-, 𝜃#, … , 𝜃* = #
45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

• Goal: 				minimize 	𝐽 𝜽 ≔ 𝐽(𝜃-, 𝜃#, … , 𝜃*)

Normal equations to minimize 𝐽(𝜃)

𝐽 𝜽 =
1
2𝑚

U ℎ0 𝑥 7 − 𝑦 7 4
5

7:#

Normal equations to minimize 𝐽 𝜃

𝜽∗ = argmin
											𝜽

𝐽(𝜽)

𝑥#
(7) … 𝑥*

(7) 𝑦(7)

𝑥#
(#) … 𝑥*

(#) 𝑦(#)

𝑥#
(4) … 𝑥*

(4) 𝑦(4)

⋮ ⋱ ⋮ ⋮

𝑥#
(5) … 𝑥*

(5) 𝑦(5)

𝑥-
(7) 𝑥#

(7) … 𝑥*
(7) 𝑦(7)

1 𝑥#
(#) … 𝑥*

(#) 𝑦(#)

1 𝑥#
(4) … 𝑥*

(4) 𝑦(4)

⋮ ⋮ ⋱ ⋮ ⋮
1 𝑥#

(5) … 𝑥*
(5) 𝑦(5)

set 𝑥-
(7) = 1, 𝑖 = 1,2, … ,𝑚

Normal equations to minimize 𝐽 𝜃
Given a training set

𝑋 ∶=

−		(𝑥(#))^ −
−		(𝑥(4))^ −

⋮
−	(𝑥(5))^ −

=

1 𝑥#
(#)

1 𝑥#
(4)

… 𝑥*
(#)

… 𝑥*
(4)

⋮ ⋮
1 𝑥#

(5)
⋱ ⋮ 	
… 𝑥*

(5)

∈ ℝ5×(*b#)

𝑦 ∶=

𝑦(#)
𝑦(4)
⋮

𝑦(5)
∈ ℝ5

𝑥(7) =

𝑥-
(7)

𝑥#
(7)

⋮
𝑥*
(7)

∈ ℝ*b#

𝜃 ∶=

𝜃-
𝜃#
⋮
𝜃*

∈ ℝ*b#

Normal equations to minimize 𝐽 𝜃
Given a training set, define the design matrix X

where

set:

𝑋 ∶=

1 𝑥#
(#)

1 𝑥#
(4)

… 𝑥*
(#)

… 𝑥*
(4)

⋮ ⋮
1 𝑥#

(5)
⋱ ⋮ 	
… 𝑥*

(5)

𝑦 ∶=

𝑦(#)
𝑦(4)
⋮

𝑦(5)
𝑥(7) =

𝑥-
(7)

𝑥#
(7)

⋮
𝑥*
(7)

𝜃 ∶=

𝜃-
𝜃#
⋮
𝜃*

𝐽 𝜃 = #
45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

ℎ0 𝑥 = 𝜃- + 𝜃#𝑥# + 𝜃4𝑥4 + ⋯+ 𝜃*𝑥* = U𝜃c𝑥c
*

c:-

Normal equations to minimize 𝐽 𝜃

ℎ0 𝑥 7 = (𝑥(7))^𝜃	

ℎ0 𝑥 = 𝑥H𝜃⇒

⇒

𝑋^𝜃 − 𝑦 =

(𝑥(#))^𝜃 − 𝑦(#)

(𝑥(4))^𝜃 −𝑦(4)
⋮

(𝑥(5))^𝜃 − 𝑦(5)

𝐽 𝜃 =
1
2𝑚

𝑋^𝜃 − 𝑦 ^ 𝑋^𝜃 − 𝑦

⇒

⇒

⇒

ℎ0 𝑥 7 − 𝑦(7) = (𝑥(7))^𝜃 − 𝑦(7)⇒

𝛻0𝐽 𝜃 = 𝛻0
1
2𝑚

𝑋^𝜃 − 𝑦 ^ 𝑋^𝜃 − 𝑦 	

𝛻0𝐽 𝜃 =
1
𝑚

𝑋^𝑋𝜃 − 𝑋^𝑦

if 𝛻0𝐽(𝜃∗)= 𝟎 𝑡ℎ𝑒𝑛			𝜃∗ = 𝑋^𝑋 I#𝑋^𝑦

𝐽 𝜃 =
1
2𝑚

𝑋^𝜃 − 𝑦 ^ 𝑋^𝜃 − 𝑦

Normal equations to minimize 𝐽 𝜃

⇒

⇒

𝜃∗ = argmin
											0

𝐽(𝜃)

Normal equations to minimize 𝐽 𝜃

Size (feet2) Number	of	
bedrooms

Number	of	
floors

Age of	home	
(years)

Price	($1000)

2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
3000 4 1 38 540

Examples:	

1
1
1
1
1

𝜃∗ = 𝑋^𝑋 I#𝑋^𝑦

Normal equations to minimize 𝐽 𝜃

𝜃∗ = 𝑋^𝑋 I#𝑋^𝑦

What if 𝑋^𝑋 is non-invertible?

v Too many features (e.g. #training example	≤ #𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).
Delete some features, or use regularization.

v Redundant features (linearly dependent).
e.g. if 𝑥# = size(in feet2) and 𝑥4 =	size(in m2) then
													𝑥# and 𝑥4 are linearly independent. 𝑥# can be removed.

Gradient descent to minimize 𝐽(𝜃)

𝑱 𝜽 =
𝟏
𝟐𝒎

U 𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝟐
𝒎

𝒊:𝟏

𝜃∗ = argmin
											0

𝐽(𝜃)

Gradient Descent

This rule is called the LMS (least mean squares) update rule, and is also known as the
Widrow-Hoff learning rule.

	𝜃c 	≔ 𝜃c − 𝛼
𝜕𝐽 𝜃
𝜕𝜃c

𝜃c 	≔ 𝜃c − 𝛼 ℎ0 𝑥 7 − 𝑦 7 𝑥c
7

For a single training example (m = 1),

𝐽 𝜃 =
1
2𝑚

U ℎ0 𝑥 7 − 𝑦 7 4
5

7:#

Gradient descent to minimize 𝐽 𝜃

o Batch Gradient Descent:
Parameters are updated after computing the gradient of error with respect to the
entire training set

Three types of gradient descents

o Stochastic Gradient Descent(SGD):
Parameters are updated after computing the gradient of error with respect to a
single training example

o Mini Batch Gradient Descent:
Parameters are updated after computing the gradient of error with respect to a
subset of the training set

Gradient descent to minimize 𝐽(𝜃)

Batch Gradient Descent

Repeat {
																		𝜽 ≔ 𝜽 − 𝛼𝛻0𝐽 𝜽
}

Batch Gradient Descent

𝛼: Learning	rate

𝐽 𝜃 = #
45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

ℎ0 𝑥 = 𝜃- + 𝜃#𝑥# + 𝜃4𝑥4 + ⋯+ 𝜃*𝑥* = U𝜃c𝑥c
*

c:-

Batch Gradient Descent

𝛻0𝐽 𝜃 =

𝜕𝐽 𝜃
𝜕𝜃-
𝜕𝐽 𝜃
𝜕𝜃#
⋮

𝜕𝐽 𝜃
𝜕𝜃*

⇒

𝜕𝐽 𝜃
𝜕𝜃-

=
1
𝑚
U ℎ0 𝑥 7 − 𝑦 7
5

7:#

𝜕𝐽 𝜃
𝜕𝜃c

=
1
𝑚
U ℎ0 𝑥 7 − 𝑦 7 𝑥c

(7)
5

7:#

, 								𝑗 = 1,2, … , n

Repeat {
																		𝜽 ≔ 𝜽 − 𝛼𝛻0𝐽 𝜽
}

Batch Gradient Descent

𝛼: Learning	rate

Repeat {

																	𝜃c 	≔ 𝜃c − 𝛼
𝜕𝐽 𝜃
𝜕𝜃c

(simultaneously update 𝜃c	for every		𝑗 = 0,1, … ,	n)

}

Repeat {

																	𝜃- 	≔ 𝜃- − 𝛼
1
𝑚
U ℎ0 𝑥 7 − 𝑦 7
5

7:#

																	𝜃c 	≔ 𝜃c − 𝛼
1
𝑚

U ℎ0 𝑥 7 − 𝑦 7
5

7:#

𝑥c
7

(simultaneously update for every		𝑗 = 0,1, … ,	n)

}

Batch Gradient Descent

This rule is called the Least Mean Squares (LMS) update rule for a training set of m data points,
which is also known as the Widrow-Hoff learning rule.

def gradient_descent(X, y, theta, learning_rate, iterations):
m, n = X.shape
n = n-1
cost_history = np.zeros(iterations)
theta_history = np.zeros((iterations, n))
for it in range(iterations):

prediction = np.dot(X,theta)
theta = theta -(1/m)*learning_rate*(X.T.dot((prediction - y)))
theta_history[it,:] = theta.T
cost_history[it] = cal_cost(theta,X, y)

return theta, cost_history, theta_history

def cal_cost(theta, X, y):

''' Calculates the cost for given theta, X and Y.) '''
m = len(y)
predictions = X.dot(theta)
cost = 1/(2*m) * np.sum(np.square(predictions-y))
return cost

Batch Gradient Descent

Gradient descent to minimize 𝐽(𝜃)

Stochastic Gradient Descent(SGD)

Stochastic Gradient Descent

Randomly shuffle(reorder) examples in training set

Repeat {

for i=1 to m {

																													𝜃c 	≔ 𝜃c − 𝛼
1
𝑚

ℎ0 𝑥 7 − 𝑦 7 𝑥c
7

(simultaneously update for every		𝑗 = 0,1, … ,	n)

}

}

Stochastic Gradient Descent

Randomly shuffle(reorder) examples in training set

Repeat {

for i=1 to m {

																																																𝜃- 	≔ 𝜃- − 𝛼
#
5

ℎ0 𝑥 7 − 𝑦 7

																																																𝜃c 	≔ 𝜃c − 𝛼
1
𝑚

ℎ0 𝑥 7 − 𝑦 7 𝑥c
7

(simultaneously update for every		𝑗 = 0,1, … ,	n)

}

}

Stochastic Gradient Descent

def stocashtic_gradient_descent(X, y, theta, learning_rate, iterations):
m = len(y)
cost_history = np.zeros(iterations)
for it in range(iterations):

cost = 0.0
for i in range(m):

rand_ind = np.random.randint(0, m)
Xi = X[rand_ind,:].reshape(1, X.shape[1])
yi = y[rand_ind].reshape(1, 1)
prediction = np.dot(Xi, theta)
theta = theta -(1/m)*learning_rate*(Xi.T.dot((prediction - yi)))
cost += cal_cost(theta, Xi, yi)

cost_history[it] = cost
return theta, cost_history

def cal_cost(theta, X, y):

''' Calculates the cost for given theta, X and Y.) '''
m = len(y)
predictions = X.dot(theta)
cost = 1/(2*m) * np.sum(np.square(predictions-y))
return cost

Gradient descent to minimize 𝐽(𝜃)

Mini Batch Gradient Descent(SGD)

Mini-Batch Gradient Descent

first mini-batch: 								𝑥(#), 𝑥(4), … , 𝑥(|)

second mini-batch: 		𝑥(|b#), 𝑥(|b4), … , 𝑥 4|

⋮
kth mini-batch: 									𝑥(}I# |b#), 𝑥(}I# |b4), … , 𝑥(}|)

𝑥(#) 𝑥(4) ⋯ 𝑥(7I#) 𝑥(7) 𝑥(7b#) ⋯ 𝑥(5)

𝑦(#) 𝑦(4) ⋯ 𝑦(7I#) 𝑦(7) 𝑦(7b#) ⋯ 𝑦(5)

training example in each mini-batch: b

mini-batch: 𝑠 = 5
|

Given training set:

𝑥(#) 𝑥(4) ⋯ 𝑥(|) 𝑥(|b#) 𝑥(|b4) ⋯ 𝑥(4|) ⋯ 𝑥(5)

𝑦 # 𝑦 4 ⋯ 𝑦 | 𝑦 |b# 𝑦 |b4 ⋯ 𝑦 4| ⋯ 𝑦 5

first mini-batch second mini-batch sth mini-batch

Mini-Batch Gradient Descent

𝑥(#) 𝑥(4) ⋯ 𝑥(|) 𝑥(|b#) 𝑥(|b4) ⋯ 𝑥(4|) ⋯ 𝑥(5)

𝑦 # 𝑦 4 ⋯ 𝑦 | 𝑦 |b# 𝑦 |b4 ⋯ 𝑦 4| ⋯ 𝑦 5

first mini-batch second mini-batch sth mini-batch

Repeat {
Randomly shuffle(reorder) examples in training set

partition new training set into 𝑠 = 5
|

mini-batches of size b

for k=1 to s {

					𝑠𝑒𝑡				𝑋{}} = 𝑥(}I# |b#), 𝑥(}I# |b4), … , 𝑥(}|)

			𝑠𝑒𝑡				𝑌{}} = 𝑦(}I# |b#), 𝑦(}I# |b4), … , 𝑦(}|)

𝜃- 	≔ 𝜃- − 𝛼
1
𝑏
U ℎ0 𝑋 } (𝑖) − 𝑌 } (𝑖)
|

7:#

																𝜃c 	≔ 𝜃- − 𝛼
1
𝑏
U ℎ0 𝑋 } (𝑖) − 𝑌 } (𝑖) 𝑋 } (𝑖, 𝑗)
|

7:#

(simultaneously update for every		𝑗 = 0,1, … ,	n)

}

} 𝑋 } 𝑖, 𝑗 ≔ 𝑥c
(}I# |b7

𝑌 } 𝑖 ≔ 𝑦(}I# |b7)

Mini-Batch Gradient Descent

def mini_batch_gradient_descent(X, y, theta, learning_rate, iterations, batch_size):
m = len(y)
cost_history = np.zeros(iterations)
n_batches = int(m/batch_size)
for it in range(iterations):

cost =0.0
indices = np.random.permutation(m)
X = X[indices]
y = y[indices]
for i in range(0, m, batch_size):

Xi = X[i:i+batch_size]
Yi = y[i:i+batch_size]
Xi = np.c_[np.ones(len(Xi)), Xi]
prediction = np.dot(X_i,theta)
theta = theta -(1/m)*learning_rate*(Xi.T.dot((prediction - Yi)))
cost += cal_cost(theta,Xi,Yi)

cost_history[it] = cost
return theta, cost_history

def cal_cost(theta, X, y):

''' Calculates the cost for given theta, X and Y.) '''
m = len(y)
predictions = X.dot(theta)
cost = 1/(2*m) * np.sum(np.square(predictions-y))
return cost

Gradient Descent

Batch Gradient Descent Stochastic
Gradient Descent

Mini-Batch
Gradient Descent

Since entire training data is
considered before taking a
step in the direction of
gradient, therefore it takes a
lot of time for making a
single update.

Since only a single training
example is considered before
taking a step in the direction
of gradient, we are forced to
loop over the training set and
thus cannot exploit the speed
associated with vectorizing
the code.

Since a subset of training
examples is considered, it can
make quick updates in the
model parameters and can
also exploit the speed
associated with vectorizing
the code.

It makes smooth updates in
the model parameters

It makes very noisy updates in
the parameters

Depending upon the batch
size, the updates can be made
less noisy – greater the batch
size less noisy is the update

Thus, mini-batch gradient descent makes a compromise between the speedy convergence and
the noise associated with gradient update which makes it a more flexible and robust algorithm.

Linear Regression

Probabilistic interpretation

Linear Regression: Probabilistic interpretation

Assumptions:
1- There is a linear relationship between target variables 𝑦(7) and the inputs x(7) via the
equation 𝑦(7) = 𝜃- + 𝜃#𝑥#

(7) + 𝜃4𝑥4
(7) + ⋯+ 𝜃*𝑥*

(7) + 𝜖(7) = 𝜽^𝑥(7) + 𝜖(7)

2- For i =1, 2, …, m, 𝜖(7)	are distributed iid (independently and identically distributed)
according to a Gaussian distribution with mean zero and some variance 𝜎4, i.e.
𝜖(7)~𝒩(0, 𝜎4)

𝜖(7) is an error term that captures either unmodeled effects (such as if there are some
features very pertinent to predicting, but that we’d left out of the regression), or random
noise.

• why might linear regression, be a reasonable choice?
Based on above probabilistic assumption in a regression problem,

• why might the least-squares cost function J(𝜃), be a reasonable choice?

Linear Regression: Probabilistic interpretation

𝑝 𝑦(7) − 𝜽^𝑥(7) =
1
2𝜋𝜎� 𝑒I	

�(�)I𝜽��(�)
�

4��

𝜖(7)~𝒩(0, 𝜎4) implies that the density of 𝜖(7) is given by

𝑝 𝜖 7 =
1
2𝜋𝜎� 𝑒I	

� � �

4��

𝔼 𝜖 7 = 0 𝔼 𝑦(7) − 𝜽^𝑥(7) =0⇒

Var 𝜖 7 =𝜎4 Var 𝑦(7) − 𝜽^𝑥(7) = 𝜎4⇒

Linear Regression: Probabilistic interpretation

𝑝 𝑦(7)|𝑥 7 ; 𝜽 =
1
2𝜋𝜎� 𝑒I	

�(�)I𝜽��(�)
�

4��

𝔼 𝑦(7)|𝑥 7 ; 𝜽 = 𝔼 𝜽^𝑥(7) + 𝜖(7)|𝑥 7 ; 𝜽 = 𝜽^𝑥(7) + 𝔼 𝜖(7)|𝑥 7 ; 𝜽 = 𝜽^𝑥(7)

Var 𝑦(7)|𝑥 7 ; 𝜽 = Var 𝜽^𝑥(7) + 𝜖(7)|𝑥 7 ; 𝜽 = Var 𝜖(7)|𝑥 7 ; 𝜽 = 𝜎4

Since 𝜽^𝑥(7) is constant given 𝑥(7) and 𝜖(7) has a mean of zero, 	𝑦(7) = 𝜽^𝑥(7) + 𝜖(7)	implies	that

𝜖(7)~𝒩(0, 𝜎4) implies that the density of 𝜖(7) is given by

𝑝 𝜖 7 =
1
2𝜋𝜎� 𝑒I	

� � �

4��

Since 𝜽^𝑥(7) is constant given 𝑥(7) and 𝜖(7) has a mean of zero.
Similarly, 𝑦(7) does not necessarily have a normal distribution in this type of
linear regression model, but the assumptions imply that the conditional
distribution of 𝑦(7) given 𝑥(7) is normally distributed with mean 𝜽^𝑥(7) and
standard deviation 𝜎.

𝑦(7)|𝑥 7 ; 𝜃~𝒩(𝜽^𝑥(7), 𝜎4)

So,	We	can	write	the	distribution	of	𝑦(7) as	

Linear Regression: Probabilistic interpretation

Given 𝑋 (the design matrix, which contains all the 𝑥(7)’s) and 𝜽, what is
the distribution of the 𝒚=[y(1), y(2), …, y(m)]T,?

o Given any data set (x(1), y(1)), (x(2), y(2)), …, (x(m), y(m)), the probability of the data is
given by 𝑝(𝒚|𝑋; 𝜽). This quantity is typically viewed as a function of	𝒚	(and
perhaps 𝑋), for a fixed value of 𝜽.

o When we wish to explicitly view this as a function of 𝜽, we will instead call it the
likelihood function:

𝐿 𝜽 = 𝐿(𝜽; 𝑋, 𝒚) = 𝑝(𝒚|𝑋; 𝜽)

𝐿 𝜽 =¢𝑝 𝑦(7)|𝑥 7 ; 𝜽
5

7:#

																																																=¢
1
2𝜋𝜎� 𝑒I	

�(�)I𝜽��(�)
�

4��
5

7:#

by the independence assumption on the 𝜖 7 ’s (and hence also the 𝑦 7 ’s
given the 𝑥 7 ’s), this can also be written

𝑝 𝑦(7)|𝑥 7 ; 𝜽 =
1
2𝜋𝜎� 𝑒I	

�(�)I𝜽��(�)
�

4��

Linear Regression: Probabilistic interpretation

The principal of maximum likelihood says that we should choose θ so as to make
the data as high probability as possible. i.e., we should choose θ to maximize L(θ).

Maximum Likelihood

𝜃∗ = argmax
											0

𝐿(𝜃)

Instead of maximizing L(θ), we can also maximize any strictly increasing function of L(θ)

𝑙 𝜃 ≔ log 𝐿(𝜃)

𝜃∗ = argmax
											0

𝑙(𝜃)

Linear Regression: Probabilistic interpretation

= log¢𝑝 𝑦(7)|𝑥 7 ; 𝜽
5

7:#

= 𝑚	log
1
2𝜋𝜎� −

1
2𝜎4

U 𝑦(7) − 𝜽^𝑥(7) 4
5

7:#

max
	0

𝑙 𝜃 		𝑖𝑠	𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜	m𝑖𝑛
			0

1
2
U 𝑦(7) − 𝜽^𝑥(7) 4
5

7:#

=Ulog	
1
2𝜋𝜎� 𝑒I	

�(�)I𝜽��(�)
�

4��
5

7:#

𝑙 𝜽 ∶= log 𝐿 𝜽

⇒

max
		0

𝑙 𝜃 		𝑖𝑠	𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜	min
				0

𝐽 𝜽⇒

v Under the previous probabilistic assumptions on the data, least-squares regression
corresponds to finding the maximum likelihood estimate of θ.

Linear Regression

Locally weighted linear regression

Locally weighted linear regression

𝑦

𝑥

ر

linear regression on linear data

Training phase:
Compute	𝜃 to	minimize		𝐽 𝜃 = #

45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

Predict output:
return 𝑥H𝜃

Locally weighted linear regression

𝑦

𝑥

Training phase:
Compute	𝜃 to	minimize		𝐽 𝜃 = #

45
∑ ℎ0 𝑥 7 − 𝑦 7 45
7:#

Predict output:
return 𝑥H𝜃

linear regression on non-linear data

Locally weighted linear regression

v Locally weighted linear regression is a non-parametric
algorithm, that is, the model does not learn a fixed set of
parameters as is done in ordinary linear regression.

v Parameters 𝜃 are computed individually for each query point x.

v While computing 𝜃, a higher preference is given to the points in
the training set lying in the vicinity of x than the points lying far
away from x.

The modified cost function is:

𝑱 𝜽 =
𝟏
𝟐𝒎

U𝝎 𝒊 𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝟐
𝒎

𝒊:𝟏

Locally weighted linear regression

The modified cost function is:

𝑱 𝜽 =
𝟏
𝟐𝒎

U𝝎 𝒊 𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝟐
𝒎

𝒊:𝟏

o where, 𝝎 𝒊 	is a non-negative “weight” associated with training point 𝒙 𝒊 .
o For 𝒙 𝒊 	s lying closer to the query point x, the value of 𝝎 𝒊 	is large,
o For 𝒙 𝒊 	s lying far away from x the value of 𝝎 𝒊 	is small.

Thus, the training-set-points lying closer to the query point x contribute more to the
cost 𝑱(𝜽) than the points lying far away from x.

A typical choice of 𝜔 7 is:
𝝎 𝒊 = 𝒆I	

𝒙(𝒊)I𝒙
𝟐

𝟐𝝉𝟐

o where, 𝝉 is called the bandwidth parameter and controls the rate at which 𝝎 𝒊 falls with
distance from x

Locally weighted linear regression

Training phase:
Compute	𝜃 to	minimize		𝐽 𝜃 = #

45
∑ 𝝎 𝒊 ℎ0 𝑥 7 − 𝑦 7 45
7:#

Predict output:
return 𝑥H𝜃

v Locally weighted linear regression is a supervised learning algorithm.

v It is a non-parametric algorithm.

v There exists No training phase.

v All the work is done during the testing phase/while making predictions.

Points to remember:

Locally weighted linear regression

𝑦

𝑥

Locally weighted linear regression

Data
Predict

Training phase:
Compute	𝜃 to	minimize		𝐽 𝜃 = #

45
∑ 𝝎 𝒊 ℎ0 𝑥 7 − 𝑦 7 45
7:#

Predict output:
return 𝑥H𝜃

References

https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/

https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/

https://www.holehouse.org/mlclass/04_Linear_Regression_with_multiple_variables.html

Andrew Ng, https://www.coursera.org/learn/machine-learning

