

Supervised learning vs. Unsupervised learning

***** Hierarchical Clustering Approach:

- These find successive clusters using previously established clusters. A set of nested clusters organized as a hierarchical tree.
- A typical clustering analysis approach via *partitioning* data set *sequentially.*
- Construct nested partitions layer by layer via grouping objects into a tree of clusters.
- Do not need to know the number of clusters in advance.
- Use distance matrix as clustering criteria.

***** Agglomerative vs. Divisive:

Agglomerative: a bottom-up strategy

• Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters.

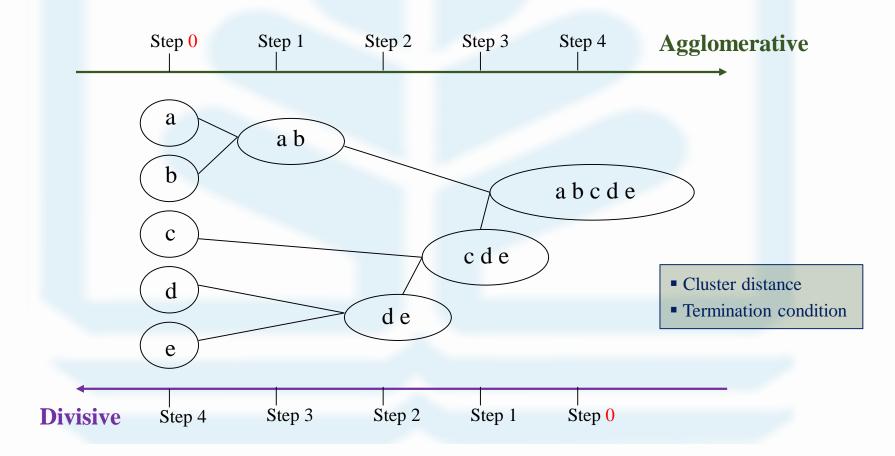
Divisive: a top-down strategy

• Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.

Agglomerative vs. Divisive clustering

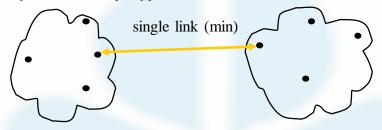
***** Example:

Agglomerative and divisive clustering on the data set {a, b, c, d, e }

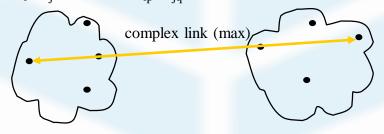


Cluster Distance Measures

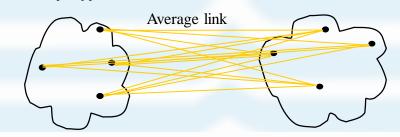
Single link: smallest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = min{d(x_{ip}, x_{jq})}



Complete link: largest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = max{d(x_{ip}, x_{jq})}



 Average: avg distance between elements in one cluster and elements in the other, i.e., d(C_i, C_j) = avg{d(x_{ip}, x_{iq})}



Cluster Distance Measures

Example: Given a data set of five objects characterized by a single continuous feature, assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	a	b	с	d	e
Feature	1	2	4	5	6

- 1. Calculate the distance matrix .
- 2. Calculate three cluster distances between C1 and C2.

Cluster Distance Measures

Example: Given a data set of five objects characterized by a single continuous feature, assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	a	b	С	d	e
Feature	1	2	4	5	6

- 1. Calculate the distance matrix .
- 2. Calculate three cluster distances between C1 and C2.

	а	b	С	d	е	
а	0	1	3	4	5	
b	1	0	2	3	4	
С	3	2	0	1	2	
d	4	3	1	0	1	
е	5	4	2	1	0	

Single link dist(C₁, C₂) = min{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)} = min{3, 4, 5, 2, 3, 4} = 2

Complete link dist(C₁, C₂) = max{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)} = max{3, 4, 5, 2, 3, 4} = 5

Average

dist(C₁,C₂) =
$$\frac{d(a,c) + d(a,d) + d(a,e) + d(b,c) + d(b,d) + d(b,e)}{6}$$

= $\frac{3+4+5+2+3+4}{6} = \frac{21}{6} = 3.5$

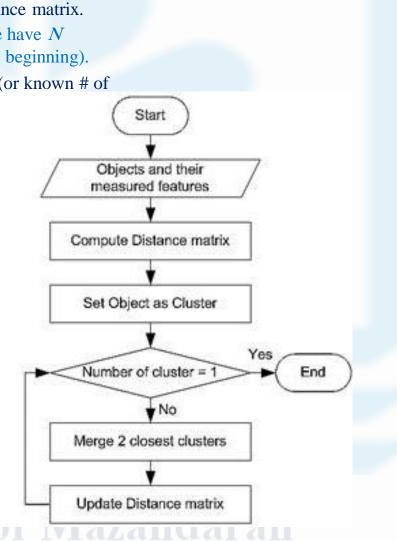
Agglomerative Algorithm

The *Agglomerative* algorithm is carried out in three steps:

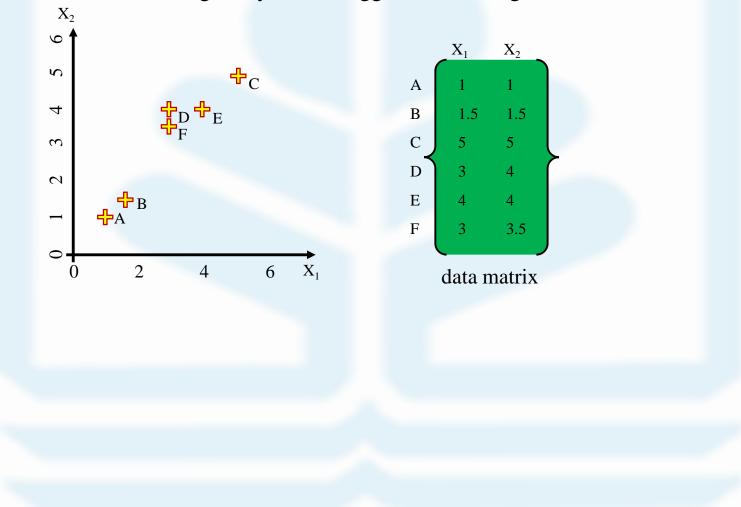
- 1) Convert all object features into a distance matrix.
- 2) Set each object as a cluster (thus if we have N objects, we will have N clusters at the beginning).
- 3) Repeat until number of cluster is one (or known # of clusters):
 - Merge two closest clusters

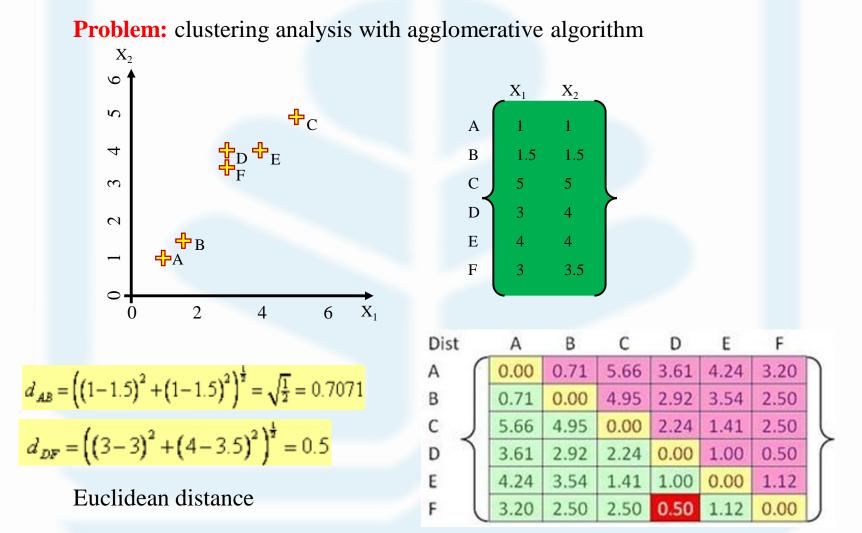
Universit

Update "distance matrix"



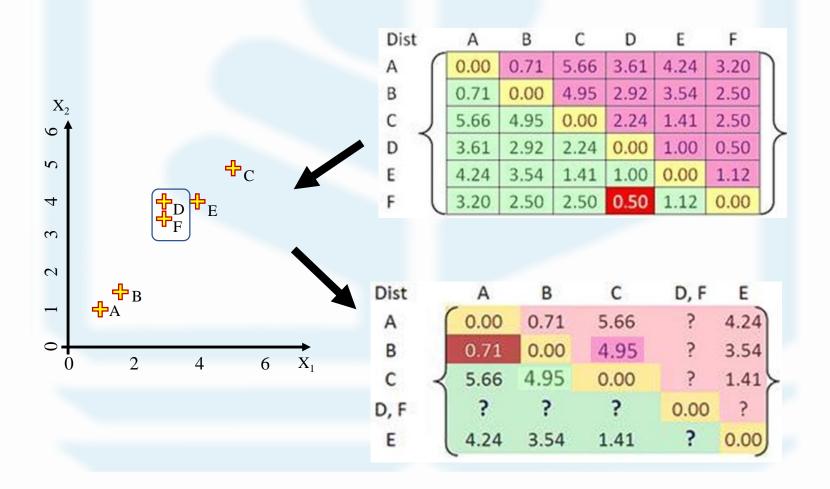
Problem: clustering analysis with agglomerative algorithm





distance matrix

Iteration 1: Merge two closest clusters



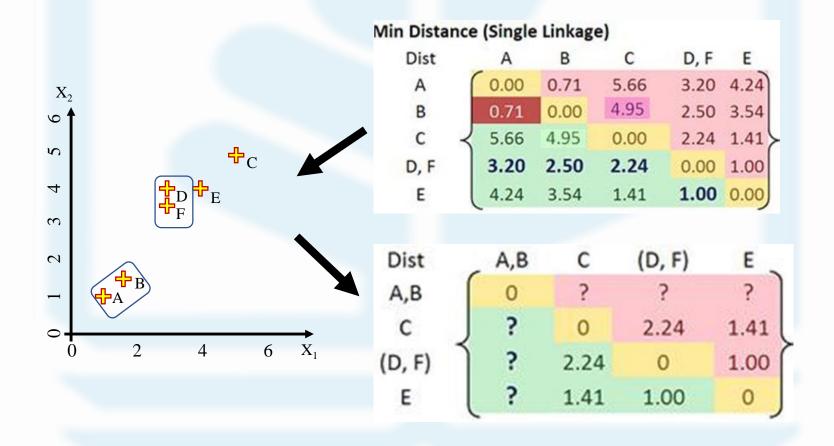
Iteration 1: Update distance matrix

Dist	А	В	С	D	E	F	-	$d_{(D,F)}$
A (0.00	0.71	5.66	3.61	4.24	3.20	Π	,
В	0.71	0.00	4.95	2.92	3.54	2.50		$d_{(D,F)}$
c J	5.66	4.95	0.00	2.24	1.41	2.50		
D	3.61	2.92	2.24	0.00	1.00	0.50	$\left(\right)$	$d_{(D,F)}$
E	4.24	3.54	1.41	1.00	0.00	1.12		
F	3.20	2.50	2.50	0.50	1.12	0.00	J	$d_{B \to (}$

$$d_{(D,F)\to A} = \min(d_{DA}, d_{EA}) = \min(3.61, 3.20) = 3.20$$
$$d_{(D,F)\to B} = \min(d_{DB}, d_{FB}) = \min(2.92, 2.50) = 2.50$$
$$d_{(D,F)\to C} = \min(d_{DC}, d_{FC}) = \min(2.24, 2.50) = 2.24$$
$$d_{B\to(D,F)} = \min(d_{ED}, d_{EF}) = \min(1.00, 1.12) = 1.00$$

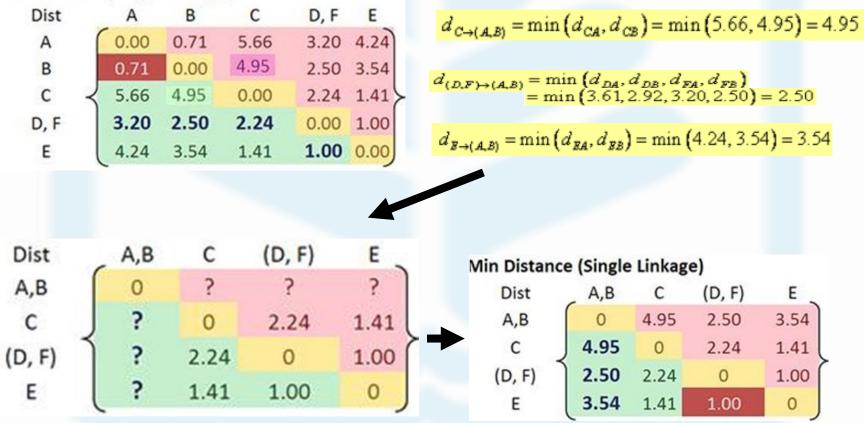
Dist	А	В	C	D, F	E	Min Distance	e (Single	Linkag	e)		
	(0.00		5.66	2	4.24)	Dist	А	В	С	D, F	E
A B	0.71		4.95	?	3.54	А	0.00	0.71	5.66	3.20	4.24
C	5.66	and the second second	0.00	?	1.41	В	0.71	0.00	4.95	2.50	3.54
D, F	7 3.00	9.55	2	0.00	?	C 4	5.66	4.95	0.00	2.24	1.41
		2.54			and the second	D, F	3.20	2.50	2.24	0.00	1.00
E	4.24	3.54	1.41	?	0.00	E	4.24	3.54	1.41	1.00	0.00

Iteration 2: Merge two closest clusters

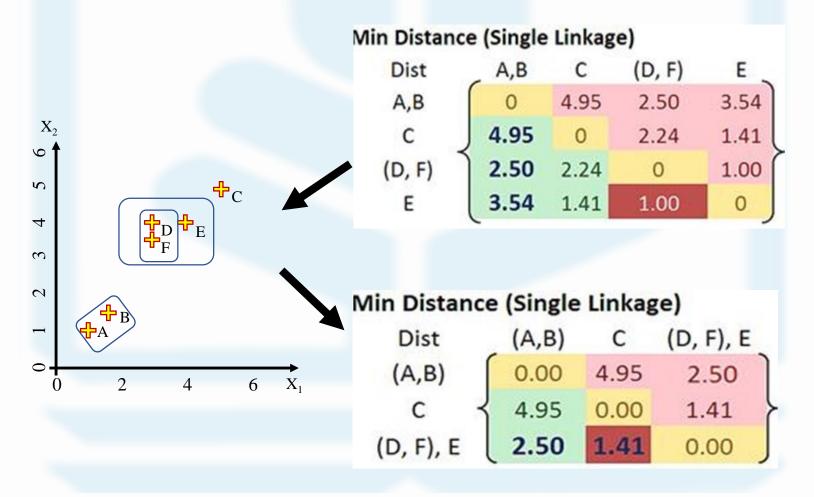


Iteration 2: Update distance matrix

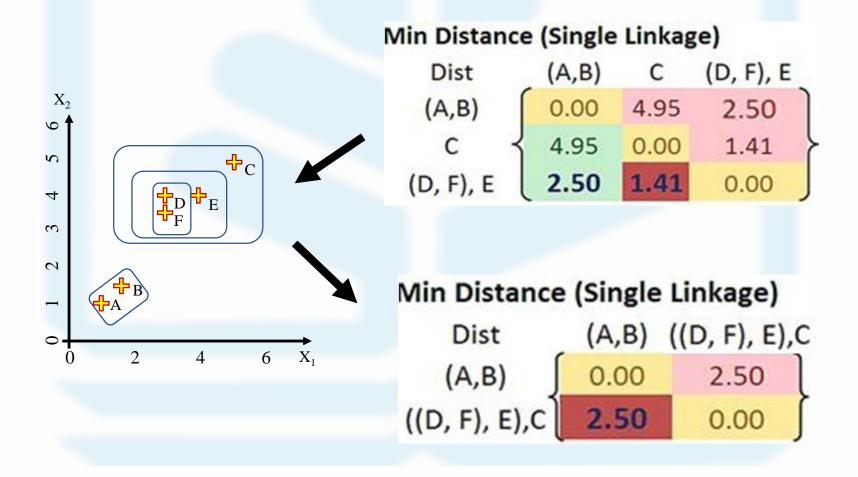
Min Distance (Single Linkage)



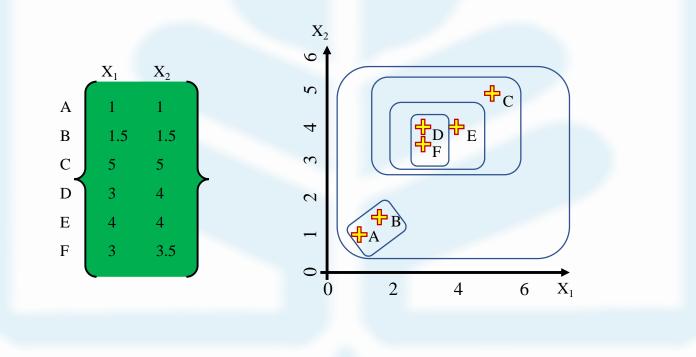
Iteration 3: Merge two closest clusters & Update distance matrix



Iteration 4: Merge two closest clusters & Update distance matrix



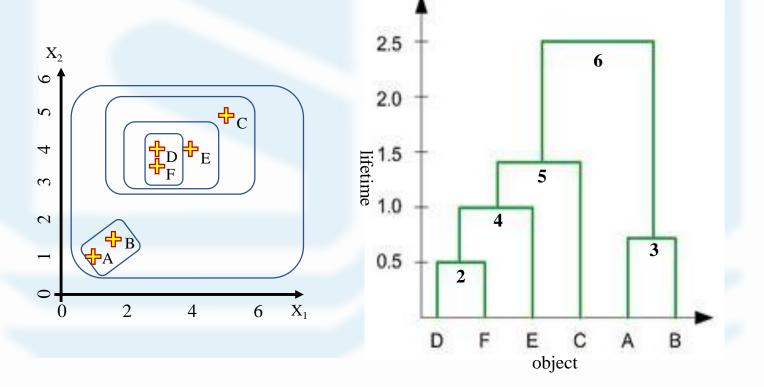
Final Result (meeting termination condition)



Key Concepts in Hierarchal Clustering

Dendrogram Tree Representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation



Key Concepts in Hierarchical Clustering

Lifetime vs K-cluster Lifetime

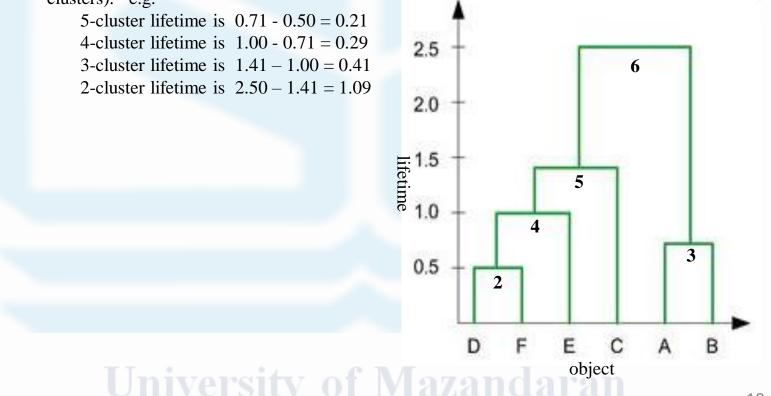
• Lifetime

The distance between that a cluster is created and that it disappears (merges with other clusters during clustering).

e.g. lifetime of A, B, C, D, E and F are 0.71, 0.71, 1.41, 0.50, 1.00 and 0.50, respectively, the life time of (A, B) is 2.50 – 0.71 = 1.79,

• K-cluster Lifetime

The distance from that K clusters emerge to that K clusters vanish (due to the reduction to K-1 clusters). e.g.



Key Concepts in Hierarchical Clustering

- How to determine the number of clusters
 - If the number of clusters known, termination condition is given!
 - The *K*-cluster lifetime as the range of threshold value on the dendrogram tree that leads to the identification of *K* clusters
 - Heuristic rule: cut a dendrogram tree with maximum life time to find a "proper" K
- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Sensitive to cluster distance measures and noise/outliers
 - Less efficient: $O(n^2 \log n)$, where *n* is the number of total objects
- There are several *variants* to overcome its weaknesses
 - BIRCH: scalable to a large data set
 - ROCK: clustering categorical data
 - CHAMELEON: hierarchical clustering using dynamic modelling

[1] Hierarchical and Ensemble Clustering, COMP24111, The university of Manchester.

